TITLF

INSTITUTION
SPONS AGENCY
PUB DATE
CONTRACT
NOTE
EDRS PRICE
DESCRIPTORS

Testinq and rurther Development of an operational Model for the Fvaluation of Alternative Title I (ESEA) Projects.
Abt Associates, Inc. Cambridge, Mass.
Office of Education (DHFH) , Washingtor, D.C. [69]
OEC-0-8-001691-1882 (099)
221 p .
EDRS Price MP-\$0.65 HC-\$9.87
Academic Achievement, Change Aqents, Compensatory Education Programs, *Computer Proqrams, *Cost Fffectiveness, Dropouts, Educational Environment, Fducational Quality, *Educational Research, * Environmental Influences, Learning Characteristics, Learning Processes, *Models, Prediction, primary Education, Program Fvaluation, School Community Relationship, Secondary education, Student Attitudes, Student Characteristics, Truancy

The Elementary and Secondary Education
Cost-Effectiveness Model originally developed to a detailed mathematical specification has now been developeत into a computer orogrammed form which can he used at the school system level. This, the Office of Education Cost-fffectiveness (OFCF) Model. is based on the major hypotheses that changes in student impedance (or resistance to learling) are proportional to changes in the quality and quantity of personal services provjded by the school, and that changes in student achievement are directly proportional to changes in the quality and quantity of instruction and inversely proportional to total change in inpedance. Students are considered in terms of those variables most easily ascertained by the schools. The model is outilned and the methodology by which its parameters are set and the steps by which it is used are described. Analysis of sample model runs is presented. Included in the appendices are directions for using and changing the model, description of the prograr organdzation, flow charts, and the proqram itself. (PR)

TESTING AND FURTHER DEVELOPMENT OF
 AN OPERATIONAL MODEL
 FOR THE
 EVALJATION OF
 ALTERNATIVJ; TITLEI (ESEA) PROJECTS

> U. DEPARTMENT OF MEALTH. EOUCATION
> OFFICE OFEARE
> $\begin{aligned} & \text { THIS OOCUMENT HAS EEENTION REPRODUCED } \\ & \text { EXACPIYAS RECEYED }\end{aligned}$
> EXACTIYAS RECEIVEO FROM TME PERSONED
> ORGANIZATION ORIGIRATING TF. PORSON OR
> VIEW OR OPINIONS SIATED OO NOT NECES
> SARILY REPRESENT PCFICIAL OFFICE OFEDU
> CATION POSITHON U.SI OLICY OFICE OF EDU

For the

U. S. Office of Education (Contract OEC.0.-8-001681-1882(079)).
by
Abt Associátes, Inc. Cambridge, Massachusetts

TABLE OF CONTENTS

CHAPTERI INTRODUCTION 1
CHAPTER II SUMMARY AND RECOMMENDATION 3
Recommendations 6
CHAPTER III THE MODEL 11
The Overview 11
The School Flow and Intervention
Processes. Introduction 23
The Intervention Model 26
The School Flow 46
Dropout and Truancy Submodel - 54
Community Eifects Submodel 62
The Output Model 75
CHAPTER IV ESTIMATING PARAMETERS OF THE OECE MODEL 76
Introduction 76
Nature of the OECE Model and Its Parameters 78
Parameter Estimates 81
School Flow Paranieter Estimates 82
Instruction Index Parameters 83
Service Index and Service Effectiveness Parameters 86
CHAPTER V ANALYSIS OF SAMPLE MODEL RUNS 94
Introduction 94
Adaptation of the Data Base for Model Use 96
Adaptation of the Model for Use
with the Data 98
Model Output 99
Interpretation of Run Results 100
Summary and Conclusions 104
APPENDIX A HOW TO USE THE MODEL 126
APPENDIX B TO THE SUPERINTENDENT 136
APPENDIY. C CHANGING THE: MODEL 170
APPENDIX D PROGRAM ORGANIZATION 173
APPENḊIXE FLOW CHARTS 182
APPENDIX F 197

CHAPTER I

INTRODUCTION

This report describes work carried out by Abt Associates, Inc. for the U. S. Office of Education during the contract period of February 1, 1968 to September 1, 1968, and an extension period through November, 1968. (Contract No. AA-315, Testing and Further Development of An Operational Model for the Evaluation of Alternative Title I Projects, Phase I of two phases.) The purpose of the work was to develop the Elementary and Secondary Education CostEffectiveness Model into a usable computer~programmed form. At the beginning of this contract, the model, developed by Abt Assuaiates in fiscal year 1967, consisted of a detailed mathematical spf.cification. It is now programmed in a time-sharing computer language. It has complete and detailed user forms, and its paranaters have been set. Test runs have been made with the model; the results seem reasonable, and provide good approximate figures. These tests are, however, no substitute for a large-scale and carefully controlled testing program, which would require a much greater effort than was stipulated in the contract.

The model in its present form may now be used for by individual school districts and/or researchers. This model cannot be said to be the ultimate in education cost-effectiveness models for the state of educational data and research is far too primitive to make such a statement valid. The model provides, however, a good example of the present state of the art, includes several innovative features, and is an excellent basis for future developments. The model considers students in terms of those variables such as achievement, dropout and truancy rates, and general attitude, which are most easily ascertained by schools. At the same time, it allows considerable rcom for development and change as future educational research may dictate.

This report outlines the model, discusses the methodology by which its parameters are set, and describes the steps by which it is used. Future users of the model will have the opportunity to set as
many parameters as they desire. Two major groups of parameters are. involved in making a complete setting: those that describe student achievement change based on compensatory programs and those that extrapolate student achievement into the future by means of a Markor transition. Determining on-the-spot values for either set of parameters requires, ideally, a thorough study of student records in the district or school of interest. Methods of parameter setting which require considerably less effort are discussed later in the report.

The model is not meant to be a decision-making model, but rather a predictive one. It is believed, however, that it can be extremely useful as an aid to decision-makers and researchers. Models and human decision-makers complement each other. Models can carry out conzistent detailed calculations very quickly and with great complexity of logic; men can apply years of experience to the results and judge the validity of the assumptions and hypotheses on which the output results and internal equations are based. The problem at hand can be understood in unprecedented scope and depth, and on this basis make better decisions.
.... (the use of computerized models) does not imply automatic management. A better understanding of decision-making policy and its information-feedback context will not reauce the leadership demands on the executive. Quite tine reverse. He will now have new methods to use and a new theoretical underlying structure to understand. The use of this new knowledge and these new tools will not be automatic. The more skillfully these tools are selected and the more significant the goals, the more effective will be the application. *

[^0]CHAPTER II

SUMMARY AND RECOMMENDATIONS

Developmert of the OECE Model into a woiking computer model which can be used at the school system level has helped to elucidate a number of characteristics of the ϵ ducational modeling state-of-theart and the interface between modeling and other activities in the field of education. Although these findings are detailed in subsequent chapters, . their interdependence will perhaps be made more apparent by a brief discuseion herc.

The most basic task of systems modeling is common to all formal intellectual endeavors: that of determining concepts which somehow reflect real events and processes and then determining the relationships between the chosen concepts. Such a task is difficult in any science but is particularly so in the social sciences, which lack the uniparadigm integration of the harder sciences. The multi-paradigm nature of the social sciences is a result of difficulties in devising crucial tests. This problem stems both from the difficulty of developing indices to measure concepts, and the barricrs to gathering accurate data for the indices.

Chapter ILI discusses in some detail the problem of determining concepts and their interrelations for an educational model. The theory of the OECE Model is described as based on two major hypotheses: (1) that changes in student impedance or resistance to learning are proportional to changes in the quality and quantity of personal services provided by the school, and (2) that changes in student achievement are directly proportional to changes in the quantity and quality of instruction, and inversely proportional to the total change in impedance. At this point, the e hypotheses have not been disproven and therefore constitute an ade juate basis for educational theory delineation. At the same time, as was noted in the previous paragraph, it would be surprising :if no alternative educaticnal theories contradicted these hypotheses. In the final analysis, adequacy of alternative theories must be evaluated according to the scientific criteria of explanation
(which theory provides greatest insight into the educational process), prediction, and control.

Such evaluation requires that the concepts be measured. This task (as is ncted in Chapter III) includes the inevitable problem of lack of correspondence between that which should be measured and that which can be measured. In orde; that the model become operational it was often necessary to develop proxy measurable variables which were assumed to reflect other, unmeasurable variables.

Given the concepts and hypotheses relating them and given the indices which come closest to measuring the concepts, Chapter IV discusses the methods by which strengths of relationships between variables were determined. It is noted in that chapter that a lack of systematic, nationwide research into the causes of changes in student achievement poses difficulties for the task of properly estimating the model's parameters. Moreover, it is noted that since any social system is dynamic, changes in parameters arc likely to occur over time. Thus, in social science, theory must constantly be subject to revision as both the insight gained from theory and changes in exogenous factors affect the parameters and algorithms of relationships.

Completion of model programming and setting of parameters permits actual use of the model. Chapter V discusses the model 's usability in terms of correct functioning, feasibility of input requirements, interpretability of output and validity of output. The greatest problem was found to be that model results are extremely sensitive to the parameter settings. With proper settings, the model results seemed both interpretable and valid, although a much larger scale testing program would be necessary to adequately determine validity.

The experience gained from development of the Office of Education Cost-Effectiveness Model into a form of high usability permits a number of conclusions about the process of educational modeling and the relationship of educational modeling efforts to other research activitics in education.
I) It is possible to model the educational process using measurements which are readily available to the user. Such a model cain be used to make presdiction about the relative effectiveness of different allocations of both financial and human resources.
2) Modeling capabilities present no constraints on the validity of predictions made by a model. To the extent that accurate information about relationships is known, such information will permit valid prediction.
3) Information constraints on modeling efforts stem from inadequacies in three interrelated components of educational research: specification of theory, development of measurements, and basic research. A model can only be as valid as the theory on which it is based. Even if the theory has merit, it is necessary to have measurenients which are both meaningful and usable. Finally, systematic and high quality basic research on both static relationships and the dynamics of changes in relationships is essential to valid modeling.
4) Since the present OECE Model is more refined and differentiated than the available information used to set its parameters, it will b possible to revise the model as better information becomes available without substantially altering the model's framework.
5) Since educational modeling focuses attention on the entire range of research activities from specification of concepts and theory to development of measurements and research into relationships, and since the output of model use is predictions, the model is a convenient tool for stimulating educational research on all fronts, especially if systematic method and incentives are developed for model use and reporting of results of model use.

Recommendations

1. The OE Cost-Effectiveness Model has been designed primarily for use as an aid to improved decision-making and resource allocation at either the school system or school level. It is not known at present what the impact of widespread model use would be, since the OECE Model is presently unique in its capabilities for application in a variety of educational situations. It is quite conceivable that use of the model, or a more refined version, would significantly improve educational outputs either through its accuracy or merely by familiarization of users with education systems concepts. In addition, model use and reporting of results would indicate strong and weak points of the model, both sonceptual and empirical, and situations in which model results have high and low validity. Widespread use of the model, in short, would not only provide benefits to school systems, but also provide a basis for evaluating overall utility of the model and ways in which it can be improved.

It is,therefore, recommended that the Office of Education,
A) Make the OECE Model available for general use, publicize availability among potenial users, and provide incentives for model use. Incentives could take a number of forms, but the most effective would probably take the form of grants which cover some or all of the costs of model use.
B) Develop a systematic method for reporting, storage, and retrieval of the results of model use. To this end, in centives for use should be contingent on formal reporting of results. Storage and retrieval could probably most efficiently be accomplished by use of the ERIC system, in winch reports could be listed under a special category.
2. - The present report emphasizes the fact that validity of model results depends substantially on accuracy of the numerous parameter weightings. Such weightings cannot be consideredinvariant: importance of many factors in the educational process differs most notably by region and ethnic composition, as well as over time.

In order that the maximum validity and, therefore, utility of OEGE Model application be achieved, it is recommended that the Office of Education provi de resources for the development
of a parameter handbook which would list parameter settings for all significantly different situations. Such a task, though iormidable, would substantially increase the utility of model use, and, in addition, provide a great deal of basic research information which could be used for other purposes.
3. As is discussed in several sections of this report (e.g. Chapters IV and V and elsewhere), the present-lack of comprehensive research on causes of student pexformance and changes in performance is a far more limiting constraint on successful modeling of the educational process than is the state-of-the-art of medeling per se. Any model, regardless of its conceptual sophistication and ability to integrate diverse types of information, is severely limited in its validity by the degree of accuracy concerning strengths of relationships and the validity of data upon which the model operates. The first and second recommerdations of this report deal in part with ways of alleviating the present deficiencies of educational research, but neither fully deals with the questions of which factors are most significantly associated with student performance, because neither explores beyond the relationships already contained in the OEGE Model.

It is recommended that detailed basic research of a comprehensive nature be undertaken in a small sample of cooperating school districts to alleviate this gap. The research should be comprehensive in the sense that for a given school district, it would explore all conceivable dynamics of the educational proce's which have a direct or indirect effect on student performance. It should be basic in the sense that it would concentrate on isolating empirical relationships, rather than on determining the strength of relationships which have already been structured in a theoretical model. While efforts described under the first and second recommendations would provide the basis for more finely tuning the present model, comprehensive basic research would provide a means for structurally modifying the present model, or if that proved unfeasible, developing a second generation model to move accurately simulate the educational process. Whereas
the first and second recommendations have concerned a broader scope of research, this recommendation is concerned with greater depth.
4. It has not been assumed that the values to which the parameters of the model are presently set are fixed in any sense. Chapter IV discusses the problems of the currently incomplete knowledge of the relationships involved in the educational process, and the problems of the changing nature of these relationships over time. The model should not be static. Its parameters should be adjustable to the situation of changing knowledge.

At present, the only way to change or :update the parameters is to erase an old value and type in a new one. This method is acceptable for cases in which the new value completely supercedes the old one. However, there are many instances in which new knowledge about parameters does not negate the previous values, but is simply more data which has to be added to the existing data, the sum of the knowledge being ased to compute the parameter settings. An example of parameters for which this is likely to happen is the set of Markov matrix transition probabilities. There are well known methods of updating parameters by weighting old and new knowledge to form the best estimates of the new values. The problem is a classical one of Bayesian statistics. It is, therefore, recommended that the model be designed to more or less automatically update its parameters by use of Bayesian statistics.
5. The model is at an early stage in its development, and needs both more and more thorough tests to insure reliable operation. It is presently designed to be operated by a specialist or trained layman-someone who is both some what familiar with the mathematics and with the computer program design. Administrators who want answers to their planning questions must transmit raw data to such a specialist to be decoded and placed in the computer. This step not only removes the model's operation from the administrator, but also make the process somewhat cumbersome. Ideally, the administras should be able to
sit at a time-sharing computer console and try the alternative strátegies himself; most adminis rators lack the training to be able to co this.

The ideal mode, of course, involves interfacing with the computer persons who arc not likely to have a working knowledge of computers. Conversations with the computer will have to be in a language which the user understands and with which he is familiar. There are many of these types of languages in existence today. Special programs such as SNOBOL have been created to facilitate, among other things, generation of interactive computer languages. Using this and sinilar programs, a language which is very close to Eaglish and employing the terininology familiar to administrators could be developed. This would bring the process hcme to the administrator and give him complete control over the computation without his having to develop specialized computer facilities.
6. During the development of the model, the Markov transitions proved to be a workable but somewhat limited method of describing the student flow from grade to grade. This method of describing transitions is inherently a discrete process. Changing achievement levels, a continuous measure of performance, had to be broken into states of achieving above and below threshold achievement rates. Describing the process by percentages above and below the threshold introduces an approximations.

It would be more desirable to have a matched method of predicting achievement changes and of projecting studert performance. Since the continuous process is the more accurate, it would seem reasonable to make the projective method also continuous. One of the ways of accomplishing this is to investigate the use of time series analysis--a contint sus process-- for projecting student performances. This essentially implies that a student's performance in any given grade is a linear function of his performance in previous grades. This \dot{w} ould climinate the discrete treatment and hopefully increase the overall a cocuracy of the model.
7. It is well known that the learning which takes place in a school setting is very strongly influenced by the background and extra-school environment of the student. Attempts have been made to consider these influences through the inclusion of factors of student background in the model. The relationship between the inschool process and the out-of-school process is considerably more complex than its present treatment in the model. This relationship can only be crudely represented at present due to the lack of existing research into the variables and processes involved.

It is recommended that research be carried out to investigate this relationship. A useful first step might well be the modelling of the process from available research and data, to be followed by the iavestigation and testing of the postulated interations. This sort of goal-oriented research should have greater immediate pay-off than less structured research. A useful testbed for the modelling of the community-school interaction would be the present OECE Model. It is expected that the community submodel could be enlarged and feedback mechanisms developed to integrate the new knowledge into the present model.

IU. 1 THE OVERVIEW

The OECE Model has been developed to serve two major purposes. It enables administrators to compare in depth proposed compensatory education programs, and also to examine the long-range results of both proposed and existing programs. Examination of the strategic effects of school programs, a major task of administrators, requires detailed information on the long-term practical effects of education. The fact that special reading instructors improve reading achievement is difficult to interpret without information on the eventual results, in terms of future academic performance and useficlness the community, of the improvement in reading ability. The model's theoretical basis is the premise that these long-term effects and specific educational inputs can, in quantitative terms be correlated. This requires the input of quancified variables, ciescribing in detail the student population and schooling levels before and after compensatory education.

For purposes of comparison, a "base-line" run is made. This uses the schooling levels before compensatory education to establish within the data banks the varicus levels of initial school inputs and to project probable student performance after compersatory education. Comparison of these results with the baseline outputs permits evaluation of the probable efficacy of the program.

The development of the model for evaluation of proposed Title I Projects requires a thorough understanding of how and to what extent the various aspects of the overall student environment affect student attitudes and achievement. Complete understanding is not possible, nor are the causes and effects related by strict rules, so it is never possible to predict precisely what will happen to a group of students when certain changes are made in their school environment. On the other hand, it is possible to gain use-
ful information by isolating those aspects of the environment that appear to have the greatest influence on student performance. By applying the findings of educational theory and experimentation, the isolated variables can be related to one another in such a way as to simulate the educative process.

The Office of Education Cost-Effectivenes (OECE) Model is a first attempt at simulating the actual process cf education in a general framework. It was designed to permit evaluation of the relative effectiveness of alternative Title I Project proposals for compensatory education. Its principal function is to provide a more systematic and unbiased assessment procedure than either educated guesswork or histor ical comparison now provide.

A model of any incompletely understood process is necessarily in part a simplification and a distortion. It cannot be exhaustive or highly accurate, as it does not take into account every factor in the process, and because the relationships even between included factors are not precisely understood. The OECE Model is no exception to this rule. Its designers were faced with the problem of determining which of the known elements of compensatory education were of primary interest before they could represent the process symbolically. The choices were affected by consideration of the ultimate purpose of the model and by the availability of supportive theory and required data.

Underlying the model are important hypotheses derived from qualitative learning theory, iume quantitative research results of Davy, Bloom, and Coleman and assumptions made by the design staff at Abt Associates, Inc., and by their consultants.

Instruction is the principal sub-process of education. The teacher, the curriculum materials, and the classroomı itself represent the potential amount of learning that can be gained by any student of satisfactory ability. If completely responsive to his environment, the student would absorb all that could be learned in the classroom to the level of his ability. In effect, his resistance to instruction would be nil and the knowledge transmitted to him would be assimilated completely. However, students may and often do resist instruction.

- aside) is defined to be the resistance the student has to his educational environment. When a large number of children in an ordinary school are under-achievers, the achievement gap can probably be attributed almost entirely to resistance, rather than to limited student ability. Whatever his reason, whether laziness, fatigue, dislike of the teacher, boredom, anxiety, or even lack of jnourishment and proper clothing, a student reduces the efficiency of teaching by his negative disposition,

If grading in a given class room is perfectly fair, then teaching efficiency is measured by the difference between what is taught and what the student learns. This will be reflected in the level of student achievement. That is to say, student achievement can be described in terms of the amount of potential instruction increases, if the student's resistance either remains ${ }^{\text {- }}$ constant or decreases. It also suggests that if the amount of potential instruction were to remain constant and the resistance of the student were decreased, achievement would also rise. An analogy can be drawn between this simple relationship and Ohm's Law in electicical theory. Instruction flows from teachers to students, whose resistance lowers the resultant achievement force.

An interesting problem arises: how interdependent are instruction and student resistance? Can there be any achievement if resistance is abnormally high or instruction abnormally low? Common sense indicates that as long as resistance remains extremely high, improvement of instruction will not measurably increase student achievement. Nor will reduction in student resistance raise achievement levels, as long as instruction remains very poor. An experienced teacher of youngsters from culturally deprived homes will no doubt agree that little learning takes place when students start out negatively disposed toward schoolwork and receive no reinforcement outside the classroom, On the other hand, students from privileged backgrounds are intolerant of low-level teaching and inay actually increase their resistance as the quality of instruction decreasies.

These conceptual relationships among leve!s of :instruction, resistance, and achievement can be translated into a model of compensatory education.

First of all, by its very definition, compensatory education is designed for students resistant to normal schooling. These students are underachieving because they are not learning all they are taught. Changes in the amount and type of instruction (within the proper range of resistance) will yield gains in student achievement. Changes in resistance will similarly increase achievement if the instructional level is adequate.

Changes in the amount of instruction can be brought about by compensatory projects aimed at improving the quality of teaching or the quality of the cur riculum. Changes in resistance can take place as an indirect result of compensatory service projects. Servịce projects aim to reduce the ill effects of improper health and welfare attention in the students' home environments. By so doing, such projects tend to increase students' receptivity to learning or, in terms of the model, reduce their resistance to formal instruction.

The next step in defining the model is to identify those aspects of instruction, service, and student resistance that contribute most heavily to determining actual achievement and attitude change. Davy, Bloom, Coleman, Bernstein, and other social psychologists have made significant advances in identifying the characteristics of a student's environment that account for a large part of his achievement change. Unfortunately, the variables they have suggested in their research are not usually objectively measurable with any ease. For example, a student's sense of mastery over his environment, his need-achievement, his parents' valuing of education, the norms of his peer group, the verbal facility of his teacher, and the language patterns of his parents are identified as crucial influences on student achievement. Attitudes toward school appear to be less determinate than achievement and dependent upon even more inaccessible variables.

Instead of using the theoretical influences identified in the literature of educational research, it was necessary to find rcliable and accessible Indicators that would indicate the most decisive aspects of the crucial variables. The parents' level of education, for example, was selected as a reliable indicator of the value placed by the parents on education. Other indices, such as the newness of curriculum materials as related
to their interest and relevance for the students appeared to be less reliable because of the limitations on the standardization and collection of objective data.

Numerous such indices, representing the significant influences of the home and school environments on student attitude and achievement change, were grouped into the four categories: achievement change, instruction, service, and student resistance to instruction. Each category received an overall index equal to a weighted linear combination of each of its variable components. Each weight represented the amount of influence attributed to a given variable within its particular category.

The first step in the design of any model is the definition of outputs to serve the model's objectives. The outputs of the process of compensatory education are defined here as changes in student attitude and achievement. Presumably, these changes will vary in accordance with the differential emphasis of various compensatory education projects and the amount of effort expended on them. For purposes of evaluation, however, the effects of the programs must be combined with their costs in order to arrive at a practical measure of their relative values. Two competing projects, for example, may yeild equivalent achievement gains for the target population, but at widely varied costs. The cheaper of the two projects would then be the more cost-effective. Two other projects may yielu equivalent gains in incommensurate categories, such as reading and arithmetic, at the same cost. In this case, cost-effectiveness is identical for the two projects, unless one subject is considered more beneficial to the stridents than the other.

The second step in the design of model is the selection of instrumental variables and data inputs. The instrumental variables in the compensatory education process are those influences on student altitude and achievement change which can be improved by projects under Title I. Since Title I projects are divided into categories of personal services and of instruction, these same categories have been used in classifying school environment variables* Both categories are divided into measures of their quality and quantity; the combination of these two measures re-
presents the total impact of service and instruction on ultimate changes in student attitude and achievement.

Data inputs consist of a detailed description of the proposed compensatory education project and a characterization of the target population. The Title I Project is described in terms of its costs and its intended effects on the quantity and quality of services and instruction provided by the school. The components of Title I changes are described in terms similar to those of the instrumental variables, in order to eliminate the need for conversion.

Students are characterized in two complementary ways. The first classification is according to their ethnic background and family income. The model deals with four"student types": (1) whites who's parents' income exceeds $\$ 3,000$; (2) non-whites who's parents' income exceeds $\$ 3,000$; (3) whites whose parents' income is less than $\$ 3,000$; and (4) non-whites who's parents' income is less than $\$ 3 ; 000$. This breakdown has been created so that possible differences in student background and the resulting impedance to learning may be rated. The categories are flexible; certain school districts might, for example, want to designate Spanish-American as an ethnic type, or to change the income threshhold level.

The second description is of student impedance (resistance); this reprosents the degree of scholastic disadvantage that characterizes each stullent type. It is a measure of home and school background factors presumed to retard learning in the target groups.

In a model, input variables and instrumental variables which interact with one arother are combined with one another to produce the outputs. The combinations and interactions of the variables requires a set of decision rules and precise designations of mathematical relationships. Thesc rules and relationships constitute the theory of the model.

The theory of the CECE Model is relatively simple. In consists of two basic hypotheses and a number of additional assumptions. The first hypothesis is that the decrease in student impedance is proportional to the total increase in the quality and quantity of personal services pro-
vided by the school. It is assumed that improved services in the school will tend to reduce the scholastic disadvantages acquired by the target students both in their homes and in previous years at school. The change in scholastic disadvantage forecast by the model is taken to be equivalent to the change in student attitude, and, as such, is output.

The second hypothesis is that the change in student achievement is directly proportional to the total change in the quantity and quality of instruction, and inversely proportional to the total change in impedance. This implies that achievement change can be accomplished either by holding ;impedance constant and increasing instruction, or by holding instruction constant and decreasing impedance.

Additional rules, however, govern the tehavior of these relation-
ships. Service components of compensatory education projects are matched against the particular disadvantages of the target population before any impedance change is computed. If the service improvements are not relevant to the student disadvantages, then no impedance change is recorded.

A second constraint on the behaviors of the variable relations is the imposition of threshholds. One example of the operation of this constraint occurs in the computation of impedance change. Because impedance chango actually represents student attitudes, there is much evidence to suggest that there is a practical limit on the amount of change that could occur in a single year, regardless of the amount of service improvernent in the school. Thus an upper limit has necessarily been placed on the impedance change relationship for any given year.

These two basic relationships can predict the immediate impact of a compensatory project on student attitude and achievement. Evaluators interested in the longer-range effects of a given project can turn to the following four features of the model: (1) the effect of a change in achievement in the year of impact on achievement in future years, projected to grade 12 (School Flow submodel); (2) the effect of changes in achievement and impedance in the year of impact on student absence (Truancy subroutiae) and dropout frequency (Dropgut subroutine) to grade 12; (3) the
predicted lifetime earnings of students (Community Effects submodel); and (4) the effect of changes in achievement in the year of impact on the equality of educational opportunity (Community Effects submodel).

The School Flow submodel has been developed with the basic assumption that early failures in academic subjects may lead to later failures in other subjects. This effect is likely to spread itself in later years of school, due to increasing reliance of new subjects on those previously taught. For instance, reading ability is vital for most subjects from early elementary school on, mathematical skills are necessary in a wide variety of subiects during the student's school career, and science and social studies courses often build on knowledge gained in previous courses. Detailed studies of achievement data collected by Abt Associates staff members both in the Greater Boston area and in lowa revealed that patterns of spreading achievement failure do indeed exist both for achievement test data and for teacher-assigned grades.

The School Flow submodel projects theincremental effects of compensatory programs plus the effects of ordinary schooling for each year. This model is based on assumed subject interdependencies in the core curriculum, and computes changes in the probabilities of progress at an achievement rate which is either above or below the national, state or regional norm.

The subject-grade interdependencies are simulated in the model by the use of a one-stage Markov model; probabilities of a student's achieving at an above-average rate in one grade are determined by the achievement pattern of courses he passed in the previous grade. The number of truancies and dropouts is computed on the basis of the average achievement lag of the population. This entire process is repeated for each grade or grade group (e.g., l-3,4-6) until the population has completed the twelfth grade.

Dropout and truancy phenomena have been shown by research to be intimately connected with student achievement lags behind the national norm. A very simple linear relationship is found to model the empirical data quite successfully. Thus, in the context of the model, the only way to decrease dropout and truancy rates is to decrease the achievement lag.

This is not, strictly speaking, a legitimate conclusion to draw, but it seems to work in practice. In any case, the relationship should be the subject of further research.

The Potential Lifetime Earnings portion of the Community : Effects submodel is based on census report data and on studies of the correlation between lifetime earnings and educational level achieved. As the grade'at which the student leaves school increases, so do his achievement level at graduation and his probable lifetime earnings.

The Index of the Equality of Educational Opportunity is based on Coleman's concept of the relationship between school achievement and socio-economic background. It is described in detail in Chapter III. 6.

Any given compensatory education project will have costs associated with its components of environmental change. When the effects are tabulated for these changes, the individual project effects and costs can be studied to determine the relative cost-effectiveness of the projects.

The OECF Model was developed for the purpose of assisting in the evaluation of alternative proposed Title I Programs in any particular school district. The model is of a limited scope, and it is important here to point out two important limitations. First, the development of the model was influenced by the fact that the model is required to deal with a wide variety of school districts throughout the United States. The records and data in these different districts vary widely in quality and philosophy. Unfortunately, it is necessary in such a situation to design a model which would accept as input data which are often insufficient or lacking in quality.

Second, the model can not allocate funds to specific communities, select the best combination of programs or prescribe exact expenditures. In the hands of a skilled user, however, it will help to determine the relative effects of alternative programs, and can therefore be a powerful tool for evaluation. To build a model capable of generating and optimizing programs for a group of school districts, a great deal of additional resources and effort would be required.

A Brief Profile of the OECE Model

Function	Tic Model Wil1:	The Vocic: Will nots
Students and student change	Deal with groups of students Deal with students below national norms Indicatc changes in student group achievement	Deal with indivicluás Evaluate peogzems to raise achievcracre: of students ajove netional norms
School change	Indicate changes in rate and year of dropouts Indicate increased or decreased n.mmbers of high school graduates Indicate changes' incourse oi study selertion where ${ }^{-1}$ - applicáble	Simulate changes :- the administrative joitc; in a school distric:
Community change	Indicate changes in potentil life-time earnings Indicate changes in equality of educational opportunity	Simulate cíange in tise home as a result oi Title I
Evaluation	Compare the cost-effectiveness of proposed Title I ard other educational improvement projects within a school distric: Aid cecision-makers Determine zelative effectiveness of proposed Title I programs	Compare proposed ritie: projects actoss dis:aicis Naine decisicr.s Determine josolu:e effectiveness o: p:oposec Title I programs
Data input	Neca commonly available Cata	Give resuits more paecise than the input ca:a

The following flow chart gives a simplified view of the structure of the model. It may be helpful in visualizing how the model wo. ks and what it does.

III. 2 THE SCHOOL FLOW AND INTERVENTION PROCESSES INTRODUCTION

The School Flow and Intervention Submodels are at the core of the Cost-Effectiveness model. Their purpose is to compute the immediate effect of alternative compensatory education programs, and to project that effect into the future. These calculations are basic for the fuaction of the subsequent submodels of dropovi-truancy rates and community effects. Knowing all of thesc effects and their long-term consequences for student performance and behavior, the administrator can choose that program which, for agiven cost, provides the maximum return.

The School Flow process represents the action of the status quo; operating alone, it simulates performance patterns when there is no intervention by compensatory programs (i.e., it represents the baseline situation). The Intervention Process, on the other hand, represents the incremental effects of compensatory programs. The two processes, while performing the same function of describing the school's effect on the student population, are of very different natures in terms of their inputs and results.

Before proceer ng to a discussion of the two processes, it is important to define the term "effect" as it is used here, and to describe the ways in which it is measured. There are numerous methods of measuring student performance; each has its own advantages and disadvantages. Achievement test scores, achievement rates, course grades, and passing and failing frequencies are all generally associater with student advancement and learning processes. For a variety of reasons, which will be discussed below, achievement test scores and achievement rates (grade level equivalents per year) have been chosen as indicators of student performance.

In a hyputhetical compensatory program consisting of a number of program components, the School Flow and Intervention Processcs both causes each year an increment in the pre-existing achievement level of the student population. The two increments are simply added
together to yield the total increment, which represents a new achieve ment level. Thus, the grade equivalents of achievement levels in the various test categories advance from year to year for each type of program tested with the model.

The School Flow Submodel need not be explicit in terms of the relationships between the school and students. What is required instead is an implicit model, describing grade-to-grade transit:ons without explicitly stating the reasons for them.

For example, it is not necessary to say that a particular program caused a specific achievement change from fifth to eighth grade. It is sufficient to say that, on the average, a certain proportion of students attaining achievement level A in the fifth grade will attain achievement level B in the eighth grade. With these guidelines in mind, the Markov transition process is usel to measure the students' ascending achievement rate. This is described in detail in Section III. 4.

The Intervention Process Submodel, on the other hand, describes the explicit relationship between the achievement of the student population and the variables that affect the achievement rate. Student achievement is affected positively by many of the variables that the school manipulates, and negalively by the students' environmental disadvantages. A school may have to feed a hungry child before he can be taught. Training teachers to be sensitive to the problems of disadvantaged youngsters contributes to more effective, tearhing and, ultimately benefits the entire community as well. The model must describe quantitatively the relationship between these controllable school inputs and student achievement and behavior. We have chosen three major factors that affect student performance: (1) the instruction given by the school; (2) the physical and counseling services supplied by the school; and (3) the student's resistance or impedance to learning. For each of these factors, we have chosen a linear model which uses the simplest mathematical functional relationships. Increasing the services supplied by the schools tends to decrease the child's essistance or impedance to learning. The
decreased resistance tends to result in increased achievement level. Increasing the quality of instruction in the schools tends also to increase achievement level. These three factors are combined in a very. simple mathematical expression, analagous to Ohm's Law in electricity, to indicate student achievement rates.

This combination of school flow and intervention operates at every grade or grade group (a set of grades at the beginning and end of which achievement tests are given). It is assumed that the levels of instruction, service, and impedance remain constant for each set of grades; average levels are chosen.

III. 3 THE INTERVENTION SUBMODEL

The Intervention Submodel is the most important element of the overall cost-effectiveness model. It computes the incremental effect on student achievement of compensatory programs. The output projections by the School Flow Suhmodel, the Dropout Submodel, and the Community Effects Submodel depend directly on the accuracy of the changes in achievement computed by the Intervention Submodel. Two or more compensatory projects, having different components of instruction and service, produce differing patterns of achicvement changes. The submodel then forms the basis for all of the subsequent predictions and comparisons.

Two assumptions are implicit in the Intervention Submodel. The first is that under-achievement and the lack of motivation among students from low income homes is environmental rather than heredity. The second, following from the first, is that proper changes in the school environment, such as services from the school to offset disadvantages, and better instruction to stimulate achievement, can contribute significantly to reduction of learning difficulties and eventually improvement of student attitude and performance. A more ambitious future model would also heve to consider the impact of home and community changes on student achievement; this is, however, beyond the scope of the present effort.

The Intervention Model manipulates two major variables:

1. The average rate of achievement in a subject: if the average pupil achieves normally in each subject, this rate is one grade level per year.
2. The average achicvement level: this represents the total of the achievement rate over his years of schooling. If a pupil progresses normally in a subject, his achievement level in that subject will increase by one each year. If, on the other hand, he should progress at only half the normal rate, he would have only second-grade achievement in grade 4, third-grade achievement in grade 6, and 80 on. To catch up, he must progress at a faster-

> than-normal rate (an achievement rate greater than 1). Compensatory education programs aim to give disadvantaged pupils the boost they need in order to overcome their achievement lag.

If the average educational achievement of a population of disadvantaged students at the end of each year is measured in terms of grade level norm, the achievement and time curve might be as shown in Figure III. 3.1. In this hypothetical situation, the pupils' lag behind grade level increases for the first two years. However, at the start of the third year, a compensatory program is implemented, and its provisions are maintained in following years. This is, moreover, a highly effective program; it gradually brings the performance of the group up to the level of general norm.

Since these annual achieveinent measurements are the only information available about the progress of the disadvantaged population, we approximate the achicvement curve of a series of straight line segments. The slope of each segment represents the average rate of achievement over a year of schooling.

In this model, rate of achievement can be manipulated indirectly. This corresponds closely to reality. If intense educational processes are introduced by compensatory programs, one cannot expect an instantaneous change in the achievement level of the students. One can expect, however, an acceleration of the learning rate. Ideally, a rate of achievement higher than that of the national population or the regional population is maintained until the disadvantaged population has the same distribution of achievement patterns as the normal population. The model is, in fact, constructed so that the achievements of the disadvantaged population cannot exceed that of the normal population.

The model regards achievement rate as the joint result of the instruction that pupils receive and of their resistance or impedance to that instruction. It assumes that pupils learn more rapidly under conditions of better instruction and less impedance. Services offered by the school to improve student well-being can reduce the impedance of the student. Therefore, service is another variable affecting achievement rate.

0

0
30

This model represents the level of instruction as the sum of the effects of the quality, intensity, and duration of instruction. Instructional quality results from the training and experience of teachers and from the qualiyt of instructional material. Instructional intensity depends upon the number of teachers, texts, and desks available, and on the amount of money in the instructional budget. The duration of instruction is simply the amount of time pupils spend under instruction.

Before intervention, impedance is represented as the sum of the effects of six factors of disadvantage: (1) poverty; (2) low level of parental education; (3) physical handicaps; (4) family dis ruption; (5) depressed achievement level of a pupil's peers; and (6) the pupil's own depressed achievement level.

The model represents the level of service as the sum of the effects of the quality, intensity, and duration of service. The quality of service depends on the absence or presence of prior programs of the type being considered, and on the programs, cost, if any, to the students. The intensity of service is a function of the number of paraprofessionals employed, the space available, and the budget spent on service. The duration is the amount of time the students are exposed to the service.

It should be noted here that in both the model and the program, the variables listed above are completely flexible and subject to changes. The variables listed above were chosen for the ease with which they can be measured. It is necessary to ask whether the e variables are useful if their correlation with the variable which they are to affect is low. Softer, less easily measured variables whose correlation with the output variable is high would, in the hands of a pracliced evaluator, result in a inore responsive model. These variables would, however, be subject to biases, depending on the observer, and thus to gross differences of standards in their measurement. The use may employ the model in either way that he wishes, or in both. He may replace the éxisting variables by variables of his choice, or add more, or do both.

A large numbex of evaluations of compensatory education programs are now underway throughout the Nation. At the date of this writing (December, 1968), the variables that are critical in affecting student performance have not been pinpointed. Thus, the final product awaits the results of research which is still in progress. As these instrumental variables become clarified, they may, without difficulty, be added to the model.

Levels of instruction, service, and impedance are computed using both pre- and post-compensatory conditions. The quantities actually used to calculate the achievement change are the changes in instruction, service, and impedance from the baseline (i.e., precompensatory) level.

The flow chart in Figure III. 3.2 describe the flow of information and the interactive influences of the quantities. The mathematics of the model may now be considered in detail.

INSTRUCTION

Instructional Quality
The quality of instruction is affected by two variables-one measuring the quality of the curriculum and the other the quality of the teacher. The two chosen here to represent the quantities are RECEN, and index of the recency of publication for textbooks used, and TCHEXP, an index of teacher experience. As with all of the other variables of this type, the user is free to interpret these in whatever manner he wishes. For example, he may use an index of teacher quality based on verbal ability, number of degrees, number of graduate credits, or any of a number of measures, or he may straight-forwardly use an index indicating the number of years of teaching experience. This is an eximple of how one may use a more sensitive measure of teacher qual.ty if a highly quantifiable one can be found, or how a more subjective measure can be incorporatedinto the model with no change in mo lel structure. Thus, the more sophisticated user can bend the molel somewhat toward his interpretation, whereas the user following the directions explicitly, can use the model with good results. The same argument can be made in other sections, and should be kept in mind.

Mathematically, the input variables are corbined as follows:

where

TCHQAL ${ }_{\mathbf{j}}$	Instructional Quality Index
RECEN_{j}	Recency of Curriculum Material, Subject j
TCHEXP ${ }_{\mathbf{j}}$	Teacher Experience; Subject j
$\mathrm{TQW}_{i, j}{ }^{\text {d }} \mathrm{i}=2$:	Instructional Quality Weights, Subject j
$\mathrm{j}:$	Subject

Magnitude ranges:

Instructional Intensity

Instructional intensity is related to terms that describe the instructional environment. It is dependent on four terms: the teacher/ pupil ratio; the number of texts per student; the number of desks per student; and the budget for teaching aids.

$$
\begin{aligned}
\mathrm{TCHITN}_{j}= & \left(\mathrm{TIW}_{1, j} \cdot \mathrm{TCHRS}_{\mathrm{j}}\right)+\left(\mathrm{TI}_{2, j} \cdot \mathrm{TEXTS}\right)+ \\
& \left(\mathrm{TIW}_{3, j} \cdot \mathrm{DESKS}_{j}\right)+\left(\mathrm{TIW}_{4, j}, \mathrm{TCHBUD}_{\mathrm{j}}\right)
\end{aligned}
$$

where

$\mathrm{TCHITN}_{\mathbf{j}}$:	Instructional Intensity, Subject j
TCHRS $^{\text {: }}$	Teacher/Pupil Ratio, Subject j
TEXTS $_{j}$:	Texts / Pupil Ratio, Subject j
DESKS_{j} :	Desk/Pupil Ratio, Subject j
TCHBUD $_{j}$:	Budget for Teaching Aids, Subject j
$\mathrm{TIW}_{i, j} \mathrm{i}=1,4 \mathrm{l}$	Instructional Intensity Weights, Subject j
j:	Subject

Magnitude ranges:

$$
1 \geqslant \sum \mathrm{TI} W_{i j}>0
$$

0
35

Instructional Duration
Instructional duration measures the relative amounts of time during which students are exposed to instruction. It is represented by indices for the numbers of hours per day, days per week, and weeks per year that the student spends under instruction.

$$
\text { TCHDUR }_{\mathbf{j}}=\left(\text { CTHRS }_{\mathbf{j}} \cdot \text { TCHDYS }_{\mathbf{j}} \cdot \text { TCHWKS }_{\mathbf{j}}\right)
$$

where

TCHDUR ${ }_{\mathbf{j}}$	Instructional Duration Index, Subject j
$\text { CTHRS }_{j}:$	Number of Hours/Day Spent Teaching Subject j
$\text { TCHDYS }_{j}:$	Number of Days/Week Spent Teaching Subject \mathbf{j}
$\mathrm{TCHWKS}_{j}:$	Number of Weeks/Year Spent Teaching Subject ${ }^{\text {j }}$
j :	Subject

Magnitude ranges:

Instruction Index

The instruction index combines three factors computed in previous sections: Instructional Quality, Instructional Intensity, and Instructional Duration. The three factors are combined linearly to produce the final result.

$$
\begin{aligned}
C_{j}= & \left.T W_{1, j} \cdot \operatorname{TCiFQAL}_{j}\right)+\left(T W_{2, j} \cdot \operatorname{TCHITN}_{j}\right) \\
& +\left(T W_{3 j} \cdot \operatorname{TCHDUR}_{j}\right)
\end{aligned}
$$

where

C_{j}	Instruction Index, Suhject \mathbf{j}
TCHQAL $_{j}$:	Instructional Quality Index, Subject j
TCHITN $_{\mathbf{j}}$:	Instrustional Intensity Index, Subject j
TCHDUR $_{\mathbf{j}}$:	Instructional Duration Index, Subject j
$T W_{i, j}{ }^{\text {i }}=1,3$:	Instruction Weights, Subject j
j:	Subject

Magnitude ranges:
$1>$ INSTRU, TCHQUAL, TCHITN, TCHDUR 0

SERVICE

Service Quality

Service quality is measured by two factors - whether or not the service is free, and whether or not the service is new. A program providing a new service will, in general, have a much greater effect on the target group. A free program will, in general, reach more members of the target group.

$$
\operatorname{SERQAL}_{j}=\left(S Q W_{1 j} \cdot \operatorname{NEW}_{j}\right)+\left(S Q W_{2 j} \cdot \operatorname{FREE}_{\mathrm{j}}\right)
$$

where

SERQAL $_{j}$:	Service Qualtiy Index, Service ${ }^{\text {j }}$
$\mathrm{NEW}_{j}:$	1 if Program is New; 0 if Otherwise, Service ${ }^{j}$
FREE ${ }_{\mathbf{j}}$:	1 if Program is Free; 0 if Otherwise, Service ${ }^{\mathbf{j}}$
$S Q W_{i, j}{ }^{i=1,2}$	Service Quality Weights, Service j
j:	Service Project

Magnitude ranges:

Service Intensity
The resources that the school allots to a service are a measure of its intensity, assuming, of course, that the resources are actually applied to the students. Three variables are used to represent the effect: the number of paraprofessionals devoted to the service (clerical aids, counselers, etc.), the amount of space for the service, and the budget for the service.

$$
\begin{aligned}
\operatorname{SINTEN}_{j}= & \left(\operatorname{SIW}_{1, j} \cdot \text { PARA }_{j}\right)+\left(\operatorname{SIW}_{2, j} \cdot \operatorname{SPACE}_{j}\right) \\
& +\left(\operatorname{SIW}_{3, j} \cdot \operatorname{SBUDGT}_{j}\right)
\end{aligned}
$$

where

$\mathrm{PARA}_{\mathbf{j}}$:	Paraprofessional/Student Ratio, Service j
$S P A C E$	Space/Student Ratio, Service j
$\mathrm{SBUDGT}_{\mathbf{j}}$:	Materials for Service Budget/Student Ratio, Service \mathbf{j}
$\operatorname{SIW}_{i, j} \mathrm{i}=1,3$:	Service Intensity Weights, Subject j
j:	Service Project

Service Duration

Service duration measures the relative amounts of time students are exposed to the services offered. The number of hours per day, days per week, and weeks per year are used to compute this index.

$$
\text { SDURAT }_{\mathbf{j}}=\left(\text { SHOURS }_{\mathbf{j}} \cdot \text { SDAYS }_{\mathbf{j}} \cdot \text { SWIEEKS }_{\mathbf{j}}\right)
$$

where

SDURAT $_{j}:$	Service Duration Weights, Service \mathbf{j}
SHOURS $_{j}:$	Number of Hours/Day Spent on Service \mathbf{j}
SDAYS $_{\mathbf{j}}:$	Number of Days/Week Spent on Service \mathbf{j}
SWEEKS $_{\mathbf{j}}:$	Number of weeks/Year Spent on Service \mathbf{j}

Service Project

Magnitude ranges:

- $1 \triangleq$ SHOURS, SDAYS, SWEEKS $\triangleq 0$

Service Index

The service index: is computed by combining the Ser ice Quality, Service Intensity, and Service Duration linearly to ?produce a service index for each service offered. The service indices are then combined linearly and weighted to give a final coverall measure of service involving all of the service components.

$$
\text { SERVIC }=\frac{1}{N} \sum_{j=1}^{N} \operatorname{SPW}_{j}\left[\left(\text { SW }_{1, j} \cdot \operatorname{SEROAL}_{j}\right)+\right.
$$

$$
\left.\left(\text { SW }_{2, j} \cdots \operatorname{SINTEN}_{j}\right)+\left(\mathrm{SW}_{3, j} \cdot \operatorname{DUFAT}_{\mathrm{j}}\right)\right]
$$

where

Magnitude ranges:

$$
\begin{aligned}
1 & \geq \text { SERVICE, SERQAL, SINTER, SURAT }
\end{aligned} \geq 0
$$

SERVICE EFFECTIVENESS

A service program offered by the schools ${ }^{1}$ attempts; in terms of the language of the model, to reduce students'impedance. How effective the program is in achieveing this result depends not only or its contents, but also on the point in time at which the student is able to use it. For example, a vision problem corrected early in a child's school career may have little debilitating effect on his performance. The same problem, corrected later in his career, may cause a retardation in performance that is too great to be rectified before graduation. This time effect must be taken into account. Graphically, the effect may appear as follows:

Program effectiveness also depends upon the severity of the student's impedance. Thus a graph similar to the one above may be drawn with impedance on the horizontal axis.

An empirical formula was derived to model the effect:
EFFECT $=\frac{\text { SERVIC - OLDSER }}{1+\left(\frac{\text { GRADE }-1}{\text { OLDZ }}\right)^{2}}$
where

EFFECT	$=$ Service Effectiveness
SERVIC	$=$ Service Level Index
OLDSER	$=$Service Level Index of Pre-Compensatory School Programs
GRADE	$=$ Grade in School
OLDZ	$=$Pre-Compensatory Impedance of the Student $\quad . \quad$.

Magnitude ranges:

SERVICE RELEVANCE

Service programs may or may not affect certain of the factors of disadvantage of the students. For example, free health service attacks the handicap problem, but does not affect the problem of having uneducated parents.- Homeschool liaisons and parental counseling have the opposite properties.

There must thus be some way of indicating whether a disadvantage is likely to be reduced by the set of service programs offered in the school. For this, the relevancy factors REL $L_{i} ; i=1,6$ are used. If there is some relevance of service to disadvantage factor, i, then $R E L_{i}=1$; if not, then $R E L_{i}=0$.

IMPEDANCE

Impedance Index

The target population is characterized by a set of six factors of disadvantage which, when aggregated, constitute its impedance to instruction. Impedance is expressed as an index of values between 1 and 7 , and is denoted by the letter Z. When operated upon by the appropriate service components of a compensatory project, Z decreases; the amount of decrease constititues the service's contribution to impproved achievement rate.

Impedance is then a combination of service, (through EFFECT), relevance, and disadvantage factors.

$$
Z=1+\left[Z W_{1} \cdot \text { DIS }_{1} \cdot\left(1-E F F E C T \cdot R E L_{1}\right)\right.
$$

$$
\begin{aligned}
& +\mathrm{ZW}_{2} \cdot \mathrm{DIS}_{2} \cdot\left(1-\mathrm{EFFECT}_{1} \cdot \mathrm{REL}_{2}\right) \\
& +\mathrm{ZW}_{3} \cdot \mathrm{DIS}_{3} \cdot\left(1-\mathrm{EFFECT}^{\circ} \cdot \mathrm{REL}_{3}\right) \\
& +\mathrm{ZW}_{4} \cdot \mathrm{DIS}_{4} \cdot\left(1-\mathrm{EFFECT} \cdot \mathrm{REL}_{4}\right) \\
& +\mathrm{ZW}_{5} \cdot \mathrm{DIS}_{5} \cdot\left(1-\mathrm{EFFECT} \cdot \mathrm{REL}_{5}\right) \\
& +\mathrm{ZW}_{6} \cdot \mathrm{DIS}_{6} \cdot\left(1-E F F E C T \cdot \mathrm{REL}_{6}\right)
\end{aligned}
$$

where
$Z: \quad$ Impedance
DIS S_{i} : Fraction of the Population having Disadvantage Factori.
$\mathrm{i}=1$:- Parents' Income $\leqslant \$ 3,000$ per year.
i $=2$: Parents' Education Only Elementary or Less.
$i=3$: Student Has Physical Handicap
$i=4$: Student's Family is Disrupted
$i=5$: Achievemnt Lag of the Student's Classmates ≥ 3 is Grade Levels by the 12th Grade
$\mathrm{i}=6$: \quad Student's own achievement lag is ≥ 3 grade levels by the 12th Grade
EFFECT: Service Effectiveness
REI $_{\mathbf{i}}$: Relevance of the Services to the ith Impedance Factor $Z W_{i}, i=1,6$: Impedance Weights

Ranges:

$$
7 \geq z \geq 1
$$

$1 \geq$ DIS, EFFECT ≥ 0 REL : 0 or 1
$1 \geq Z W \geq 0$
Note that the sum of the ZW's need not be less than one, as it must be with all the other weighting coefficients.

CHANGES IN IMPEDANCE

In reality, even if the most effective possible program were used, one would not expect to dissipate all of the student population's impedance in a single application of the program. There is an upper bound on the
amount of impedance change that could be expected in the target population after exposure to a program for one year. It is further assumed that this upper lincit is dire etly related to the baseline impedance. The greater the impedance, the greater the potential impedance change, all other variables being constant.

A student possessing all six factors of disadvantage is subject to a maximum rate of impedance decline. Lesser "baseline" impedances yield lesser maxima.

The equation describing the maximum rate of decline is:

Here ZMIN = 1, and ZMAX $=7$.
This is compared with the computed change in the impedance, Z-OLDZ, where OLDZ is the baseline impedance value. The maximum of Z, the computed value, and OLDZ + MAXCNG is taken to be the new impedance, Z.

ACHIEVEMENT

Achievement Rate

In a given grade, let us represent the achicvement level by A, the achievement rate by S, the level of instruction by C, and the impedance by Z. The period of time between achievement testing and during which the compensatory programs are operating is DYEAR long.

The basic assumption relating achievement to instruction and impedance is that the achievement rate index is directly proportional to instruction and inversely proportional to impedance.

$$
s=\frac{C}{Z}
$$

"Differentiating" the above equation, we obtain

$$
D S=\frac{1}{Z} \quad\left(D C-\frac{C}{Z} \quad D Z\right)
$$

where
DS: Change in Achievement Rate Index
DC: Change in Instruction Level
DZ: Change in Impedance Level
The changes noted are variations from the baseline levels.
Suppose that we are dealing with blocks of grade such that the IG-tn block is DYEAR ${ }_{\text {IG }}$ years in length. Successive DYEAR's may have differing lengths. Input variables are measured at the beginning and end of each block. The nominal grade level at the beginning of the IG-th time block is GRADE IG $^{\text {. }}$ The achievement lag at the same time is the refore $\mathrm{GRADE}_{\mathrm{IG}^{-A}}$ - In order to overcome the entire achievement lag in a given subject within a period of DYEAR years, the population would have to progress at an average rate of

$$
\operatorname{SMAX}=\frac{\mathrm{GRADE}_{\mathrm{IG}}-\mathrm{A}}{\overline{D Y E A R}_{\mathrm{IG}}}
$$

grade levels per year. Given intensive compensatory attention, an individual disadvantaged pupil might well maintain or even surpass this rate of achievement, and thus emerge from the program with achievement above general norms. For populations of disadvantaged pupils, though, there is a ceiling offect: one cannot realistically expect to do better than bring them up to the level of their peers.

SMAX represents the greatest possible average achievement rate over the period DYEAR ${ }_{I G}$. SLAST represents the average achievement rate over the previous period DYEAR 0. Intervention undertaken at the beginning of the current period changes the rate from SLAST to S; that is, there is a change in achievement rate due to intervention processes equal to:

$$
\mathrm{DS}=\mathrm{S}-\mathrm{SLAST}
$$

The greates pos sible value of $D S$ is thus

$$
=\frac{\operatorname{GRADE}_{I G}-A L A S T}{D_{Y E A R}^{I G}}-S L A S T
$$

The model assumes that, in order to achieve this maximum change in achievement rate, intervention must: (1) compensate entirely for all deficiencies in quality, intensity, and duration of instruction; and (2) eliminate all impedance resulting from disadvantage. An ideal program of intervention is one that accomplishes these tasks completely, though real programs will accomplish them only partially. Using information about the effects of intervention or instruction and impedance, the model computes an index that represents the fraction of the ideal that a real program attains. This index is the quantity DS derived theoretically earlier in this section. The achievement rate change actually attained by intervention is called $D S_{I P}$, and is given by:

$$
\begin{aligned}
\mathrm{DS}_{\mathrm{IP}} & =\mathrm{DS} \cdot \mathrm{DS}_{\max } \\
& =\frac{1}{2}\left(\mathrm{DC}-\frac{\mathrm{C}}{\mathrm{Z}} \mathrm{DZ}\right) \cdot \frac{\mathrm{GRADE}_{1 G}-A L A S T}{D Y E A R_{I G}}
\end{aligned}
$$

- SLAST)

Meanwhile, the normal, status-quo forces of maturation and usual instruction have also been producing achievement rate. The School Flow Submodel, which will be described in the following chapter, simulates these processes, that is, it predicts an achievement rate due to the normal processes, S_{SF}. Thus, we can compute an achievement rate shange due to normal profesfes:

$$
D S_{S F}=S_{S F}-S L A S T
$$

The total achievement rate change is the sum of the two effects:

$$
\mathrm{DS}_{\mathrm{TOT}}=\mathrm{DS} \mathrm{SF}+\mathrm{DS} \mathrm{IP}
$$

and the new state S (held as SLAST for the next iteration) is

$$
S=S L A S T+D S
$$

This rate S is then the average rate at which the population progresses over the period DYEAR ${ }_{I G}$, so that the new achievement level at the end of the group of years being examined is:

$$
A=A L A S T+S \cdot D Y E A R_{I G}
$$

III. 4 THE SCHOOL FLOW SUBMODEL

This submodel simulates the normal (without compensatory programs) educational process and transfer of students from grade to grade until they reach their last year of schooling. Thus it performs a two-fold function. The student population's "baseline" achievement level is described, and the effects of the baseline programs plus those of incremental compensatory education programs (determined by the Intervention Submodel) are projected into the future. Alternative compensatory programs will result in different projections, implying different dropout and truancy rates, and different expected lifetime earnings and benefits to the community. Thus, the administrator faced with a choice among a variety of programs will see the long-term effects of his decision.

The information gained from a grade-by-grade indication of potential changes in achievement levels can provide policy planners with better insight into the effects of Title I Programs. It is important to know the residual as well as the immediate effects of a proposed program; for example, one program for second graders may raise achievement levels for only a year, while the effects of another may still be noted six years later. Grade-by-grade achievement records are also useful in estimating and predicitng dropout and truancy rates. As will be shown later in this. section these predictions rely heavily on achievement measures. Educators and analysis, because of their familiarity with grade-by-grade achievement data, should be able to utilize these projections without difficelty.

In the previous section we discussed the model used to describe the effect of a given compensatory education program on the achievement levels and achievement rates of students during that program's operation. How, then, does one describe the transitions of the students between various achievement levels from grade to grade? The explicit relationships between instruction, service, impedance, and achievements are not important in this process. We are more interested in describing
empirically the student transitions among achievement levels from grade to grade, without taking into acccunt variables which are undergoing changes; the effects of these changes will have been computed by the Intervention Sbumodel. An implicit method is needed here, one grounded in empirical data and highly descriptive of the grade-to-grade flow of students.

Such a method was designed and described in Design for An Elementary and Secondary Education Cost-Effectiveness Model, Abt Associates, Inc., U. S. Office of Education Contract OE 1-6-001681-1681. The nodel uses conditional probabilities to predict the achievement pattern in a given grade from the achievement pattern in the previous grade. The student population is characterized according to the percentages of students progressing at rates above or below national, regional, district, or other medians in various achievement categories. For example, one district may have a population distributed in the following manner:
20% progressing at a below median rate in math and reading
10% progressing at an above median rate in math, but at a below median rate in reading
30% progressing at a below meclian rate in math, but at an above median rate in reading
40% progressing at an above mcdian rate in both.
This description comprises 100% of the population, each member falling into one and only one category. Each of the rew groups in the example above represent a "state". The reasons for using achievement rates as our criterion will be discussed shortly. The number of states is determined by the number of achievement categorics. If there are \underline{r} achievemert catogories (subjects, usually), then the number of states is equal to 2^{r}, so that
for 1 category, there are 2 states
for 2 categories, there are 4 states
for 3 categorien, there are 8 states
etc.

On the average, a certain percentage of the students in one state pass to another state in the following (or a later)grade. For example, 40% of the students who were progressing at an abovemedian rate in the fifth grade may be achieving at an above-median rate in reading but at a below-median rate in math in the seventh grade. These probabilities are defined for each grade-to-grade transition, and for all subject combinations, above and below median rates, in each grade. The number of students passing any combination of subjects in the following grade is predicted from: (1) the transitional probabilities for the preceding grade, and (2) the number of students in the state of each combination of subjects in the current grade.

It is clear that several criteria for the "states" could be used: comparison with median scores on achievement tests, passing or failing as indicated by teacher grades, and rate of yearly progression of achievement increase, are a few. Experience in collecting data has indicated that a measure based on achievements, or achievement test scores, should be used instead of teachers' grades for several reasons: (1) the "core" courses all but disappear in junior high and high school; (2) teachers tend to "grade on the curve," therejy eliminating any firm base of comparison between classes; and (3) collection of teachers' grades is sometimes extremely difficult, as school district adninistrative departments are much more likely to have achievement test data than student grades on hand. The last two problems are often crjtical, and make teachers' grades of little use in their context.

Achievement test data is, therefore, most practical for our purposes. Achievement levels are reported as output from most achievement tests; to obtain rates of achievement change one must employ finite differences, i.e.:

Achievement change per year

(Achievement, present test) - (Achicvement, previous test) Number of grades between previous and present

The Intervention Process Submodel requires of the School Flow Submodel the pre-compensatory program achievement rate in each subject or category: As explained earlier, the boost given by the program is nct an instantaneous increase in achievement, but rather a quickening of the pace of learning, and, therefore, a positive change in the rate of achievement. This change in rate is added to the old rate to yield'a new rate.

For example, if a student has an achievement of 4.0 at grade 5. 0 , and is thereafter achieving at the rate of only 0.5 grade levels per year, he would be achieving 5.0 in grade $7.0,6.0$ in grade 9.0 , etc. Given a boost in rate of 0.25 grade levels per year, he would have a resultant rate of .75 grade levels per year, and his achievement would be 5.5 in grade $7.0,7.0$ in grade 9.0 , etc.

Thus, the choice of the criterion for the states must be commensurate with this rate calculation. That is, we must be able to calculate from the states the probabilities or proportions of the population achieving at above or below the threshold rate in a given subject or category. A numerical example will show how this is done. "Above" and "below" refer to achievement rates greater than or less than normal rate. In this hypothetical school population:

State Number	State Description		Probability	
	Math	Reading	Value	Symbol
1	below	below	. 40	pl
2	below	äobe	. 20	p2
3	above	below	. 10	p3
4	above	above	. 30	p4

The Intervention process requires of the School Flow process data on the probability of progress from below to above the threshold math, regardless of reading achievement, and in reading, regardless of math achievement. We denote these as P_{m} and P_{r}, respectively.
$P_{m}=P_{3}+P_{4}$, the sum of all probabilities whose states have an "above" appearing in the math column. So,

$$
P_{m}=.10+.30=.40
$$

that is, 40% of the population progresses at a faster than average rate in math achievement. Similarly,

$$
\mathbf{F}_{r}=.20+.30=.50 .
$$

These quantities, P_{m} and P_{r} are the SSF mentioned near the end of the last chapter.

These transition processes are, in fact, examples of transitions following the Markov process. The assumption underlying the Markov transition concept is that the probability of being in a given state during one time period (grade k) is dependent only on the probabilities of being in the various states in the previous time period (grade $k-1$). The probabilities of transitions from the $i^{\text {th }}$ state in grade $k-1$ to the $j^{\text {th }}$ state in k is $P_{i j}$.

The total probability of ending up in the $j^{\text {th }}$ state in Gradei is the product of the probabilities of the transition from state ito state j times the probabilities of being in state i, summed over all the states i of Grade k-1. More briefly, this is

$$
p_{j, k}=\sum_{i=1}^{2 \cdot r(k-1)}
$$

$$
P_{i j} P_{i, k-1}
$$

The population of a resultant state is made up of members who have come from all the states of Grade k-1. (Grades are uséd here only symbolically.) The transition might as well be from grade 3 to grade 5, or any other increment. It is easy to show mathematically that if the transition from $k-1$ to k is a Markov process for all k of interest, the transition from $k-n$ to k is also one. The matrix of trans: ton probabilities

$$
\begin{gathered}
M=\left[P_{i j}\right] \\
\text { is a } 2^{r(k-1) y_{y} 2^{r k}} \text { matrix }
\end{gathered}
$$

W: can think of the process symbolically as follows: (let us switch to an n-year jump between grades)
group of
group of states states in grade
k -n

in grade k

Mathematically, if the list of state probabilities is a row vector, then
$\left(p_{1} p_{2} \ldots p_{2}^{r}{ }_{k-n}\right)_{k-n}^{m}$
$=\left\{\begin{array}{l}p_{1} \\ p_{2} \\ \vdots \\ p_{2}{ }^{r k} \\ \end{array}\right\}_{k}$

$$
\text { or } \stackrel{\rightharpoonup}{P P}_{k-n} \cdot M=\stackrel{\rightharpoonup}{P P}_{k}
$$

A numerical example of the process follows, in this hypothetical situation, there is one category of achievement rate in the sixth grade (overall achievement), and two in the third grade (math and reading). States are labelled "below" for lower than median achievement rates, and "above" for greater than median rates.

The empirically determined transition probabilities are computed from past résults such as:
80% of students in state $1_{3 r d}$ have gone to state 1_{6} th
5% of students in state $2_{3 r d}$ have gone to state $I_{6 / h}$
etc.
This gives $M=\left[\begin{array}{cc}\ddots & \ddots \\ .8 & 2 \\ 05 & .95 \\ 35 & .65 \\ 2 & .\end{array}\right\}$

	3rd 6th		3rd 6th
ie	$1-1$	20%	$1-2$
50%	-	$2-1$	95%
35%	$3-1$	65%	$3-2$
20%	$4-1$	80%	$4-2$

Thus, the state probabilities of grade 6 are:

$$
\begin{aligned}
& .4 .2 .1-3 \\
& =\left\{\begin{array}{ll}
(.8 \times .4)+(.05 \times .2)-(.35 \times .1)+(.2 \times .3) \\
(.2 \times .4)+(.95 \times .2)+(.65 \times .1)+(.8 \times .3)
\end{array}\right\} \\
& =\left\{\begin{array}{ll}
8 & .95 \\
.35 & .65 \\
2 & .8
\end{array}\right\} \\
& \left\{\begin{array}{l}
.425 \\
.575
\end{array}\right\}
\end{aligned}
$$

If we carry out this process from the first grade group in which compensatory programs appear to the last grade group in the schooling process, we will have at each intermediate state a description of the school population for the type of student being investigated. This represents a means of projecting student performance through the entire schooling process. Operating simultaneously for every grade group to grade group transition is the intervention process, which calculates the achievement boosts effected by the compensatory programs.

55

1II. 5 DROPOUT AND TRUANCY SUBMODEI
This section deals with failure to use educational services provided, as manifested in dropout and truancy rates. Other forms of course exist: hostility to such a degree that the teacher is simply tuned out and destructive rebellion are all too familiar examples. We have selected dropout and truancy ratcis, as these phenomena are readily observed and quantified and can be affected palpably by compensatory programs. Moreover, dropout rates are used in a subsequent part of the model, where their effects on the earning potential of the students are studied. While it seem obviors, it is perhaps worth noting that changes in dropout rates can be expected to alter the load placed on the school plant and faculty in a district. To avoid overcrowding, consideration should be given to the possible effects of Title I Programs on the number of students in school.

Although the legal definitions of truancy and dropout vary from district to district, certain general principles are consistent. Truancy can be considered as the absence from school of a child of school age without parental knowledge. Unverifiable medical excuses and absences to care for sick relatives seem to comprise a large portion of these unlawful absences. Legally, unlawful detention at home of children by parents does not constitute truancy, but the frequency of such unlawful absence is probably so minor that no distinction is made in this mode.

A child may not legally drop out of school before he is eligible for working papers. Students may be absent for extended periods before that time without being considered dropouts. The local Board of Attendance usually classifies these children as truants and is responsible for investigating the causes of absence. After a student passes the age at which dropping out is legal, truancy rates may no longer be meaningful, and extended absences can be considered instances of dropping out.

The measurernent of truancy and diopout may reflect certain systematic inaccuracies. Classroom attendance reporting or pupil accounting often plays an important role in a school's funding. Some schools receive support as a function of average daily attendance. These schools tend to remove students who were absent, legally or illegally from their rolls, and to re-enroll them upon their return. Absence rates therefore tend to be biased downward. The student case load pressures on Boards of Attendance are frequently exacerbated by the boards' obligation to verify children's absences and to determine their causes. Large case loads may introduce further inaccuracies into the reporting of absences and their causes.

In the construction of the model of truancy and dropout rates, we have utilized the correlation between achievement lag and dropout and truancy rates as the basis for our predictions. Of the variables which affect dropouts and which are subject to the effe ts of Title I funding, achievement levels are perhaps the most easily quantified ard predicted.

In previous sections of this report, the model's close association with achievements, both in the predictive aspect of the Intervention submodel, and in the projections of the School Flow submodel, has been noted. Each student's eventual decision to remain in school or to leave may be influenced by incentives applied years earlier. The most effective means of persuading a student to remain in school may be assistance in raising his achievement level in earlier years.

A potential dropout often feels pressured to leave school when he feels that he is falling steadily further behind the rest of his class, his desire to drop out is likely to increase. This relationship is expressed in the model by the computation of $J A G$, a quantity representing the distance that students in the i-th grade fall behind the normal achievement levels for that grade. Dropout rates may then be expressed as follows:

Truancy is similarly expresses as TRUANTS $_{i}=C_{i}^{1} \cdot \operatorname{LAG}_{i}+C_{i}^{2}$

The second of these regression cocfficients can, in each case, be considered to relate to the number of students who would drop out or be truants whether or not changes in their achievement took place. The subscript imakes each of the above equations express 12 different equations, as the effects of achievement lags differ from grade to grade. The effects of changes in achievement levels in primary grades can thus be extended through the student's life to grade n by $n-1$ successive applications of the formula, thereby displaying the long-term effects of the programs applied.

The previous form of the equations as described in Design for an Elementary and Secondary Education Cost-Effectiveness Mod 21 , Volume I, U. S. Office of Education, was somewhat differcnt from that above. It related the change in the number of dropouts and the change in the number of truancies to the change in achievement due to a compensatory education program. The present form of the model relates the dropouts and truancies per capita to the achicvement lag. A change of achievement, whether
caused by the compensatory education program or by the normal schooling process, produces a change in dropouts and truancies. The relationship between the variables is much easier to verify in the present form. The plots shown in Figures III. 5.1 through III. 5. 4 illustrate this, using data from a California school district. Dropouts and truancies for grades 8 and 11 are plotted against achievement lags. The truancy-achievement lag plots are remarkably linear; the dropout-achievement lag plots are less so.

It does not necessarily follow that achievement lags are causing the dropouts and truancies; other intermediate factors may be operating. The assumption which must here be made is that even if achievement lag is not the direct cause, programs affecting achievement are also affecting those intermediate factors. In fact, dropping out and truancy are probably a direct result neither of achievement lag nor of any other single variable. Until some other relationship is demonstrated, achievement lag will be laken to be the "cause" of dropouts and truancies, or to be at least an approximation of the unknown causes.

8th Gyade

VLId甘O YGd XDNVOYI
(1)

IiI. 6 COMMUNITY EFFECTS SUBMODEL

Two of the most significant effects on the community of education education are the lifetime earning potential of the student and the equality of educational opportunity. Both of these indices are approached as functions of the length of time a student remains in school and his achievement level when he leaves school. Previous chapters have detailed the effects that educational policy will have on both these factors. Output from earlier parts of the model is sued in the Community Effects submodel to predict the indirect influence of policy on the students' later lives. We have chosen to base our values of income on those given in Employment and Earnings Statistics for the United States (Bulletin No. 1312-2 of the Bureau of Labor Statistics). Employment classifications are grouped by skill levels.

A student's achicuement level is significantly correlated with his income, as are his parents' social background and race. Fach of the influences named above, except the number of years spent in school, is expressed as a factor whuse value in an "average" case is one. This is reflected in Figure III. 6. 1 and in the following equation.

Lifetime Earnings (corrected) $=$ Mean carnings for this educational level or carcer choice.
x Racial Factor
x Social Factor
x Achievement Factor
where Racial Factor = Average income for person of this race Regional Average

Since the racial factors are based solely on the distribution of students among the various types, they depict as accurately as possible the regional differences in racial stratification. The social factors $=1-a$ (where a is a small number, such as.05) depend upon whether the father's income is above or belovy the national average.
-
\square
(

()

Achievement Factors are so constructed that a student who is 10% behind his grade level when he leaves school will be penalized by 10% in his income whether he leaves in sixth or iweifth grade.

When a population of students first enters the submodel, it is broken down into classifications by employment categories. Dropouts are classified as Unskilled, Semi-skilled, or Skilled, depending on the amount of time they have remained in school. High school graduates are classified as Academic, Commercial, or Vocational on the basis of the Holland model.* Students in the Academic category are further classified as Entered College and Did Not Enter College. ${ }^{* *}$ These classifications are detailed in Figure 1II. 6. 2.

There are two significant factors in a subject's income proflle, the number of dollars earned per year, and number of years of earning life. It is desirable to combine these two into one index of Potential Lifetime Earnings. It is not at all clear at the outset, however, just what Fotential Lifetime Farnings ought to mean. A major source of difficulty stems from the ambiguity of dollar values. One dollar, withheld from circulation for a year, may, owing to inflation, have a value of only 96% when it is returned to circulation. The same dollar, invested in a functioning part of the economy, may be worth $\$ 1,06$ at the end of the year. As we are dealing with incomes which may be distributed over a span of as many as 40 years, it is imporlant that some account be taken of the possible changes in income value during that tinne span. To account for changes due to inflation, income figures are uniformly expresscd in 1958 dollars using a constant wage index. To account for the difference in value between one dollar now and one dollar at some time in the future, all futire incomes have been discounted at 6% per annum starting when the subject leaves school. A parallel series of incomes is provided, taking into account the differing unemployment rates among various educational levels and between Negroes and whites.

The final average value assigned to potential lifetime earnings is

1 [Total Number of Students)

[^1]

Potential lifetime earnings are predicted in a probabalistic manner. To assess correctly the weight the submodel output should carry in the decision process, it is necessary to know the amount by which the output may be expected to differ from "true" values (those we would predict if complete information about each individual were available). This can be evalated by standard error propagation methods as follows:

$$
\text { If PLE }=f(a, b, \ldots), \triangle \operatorname{PLE}=\left[\left(\frac{(\partial L E}{\partial a}\right)^{2}+\left(\frac{3 P L E}{\partial b}\right)^{2}+\ldots\right]^{1 / 2}
$$

Compute in this way, $\mathrm{PLE}=$

$$
\left[(15 \Delta \mathrm{Y})^{2}+\left(750 \Delta_{\mathrm{N}_{\mathrm{i}}}\right)^{2}+(150 \Delta \mathrm{~N})^{2}+10^{8}\right]^{1 / 2}
$$

assuming average values for income and achievement and a total class size of about 500. Allowing 10% relative error for income (Y) and number of students entering each classification (N_{i}), the estimated standard deviation of PLE is about 25% at mean income values. This means that half the time the PLE will be in crror by less than $\$ 13000$ and the prediction of annual income will be in crror by less than $\$ 800$ per year. Since the range of incomes is about $\$ 5000$, the most probable error is therefore about 15%.

The only model of occupational decision which can boast any data confirmation at the present time and which is at all general in extent is the Holland model of vocational determination. ${ }^{10}$ A detailed account of the formulation of this model is given by Holland. Some statistical validation may be found in a paper by Bruce C. Stockin. ${ }^{18}$

The findings of these two researchers indicate that an estimate of occupational level based on the achievement level and the socio-economic level of the subject is an accurate predictor at the . Ol level of uncertainty. Holland suggests that the relevant variable of socio-economic status is in fact the self-image of the subject. In the empirical test, the socio-economic status is a composite variable composed of the father's education, the mother's education, and the father's income. Students were ranked by quartiles in achievement and socio-economic status, and a matrix of occupational levels was produced with occupational level as the elements.

ACHIEVEMENT QUART
socioeconomic quartile

	I	II	III	IV
I	(2)	(3)	(4)	(5)
II	(3)	(4)	(5)	(6)
III	(4)	(5)	(6)	(7)
IV	(5)	(6)	(7)	(8)

Matrix elements axe Occupational Levels 2 through 8

Students were placed in the correct cell more than 60% of the time, and were misplaced t_{y} only one cell about 20% of the time.

The most extensive theoretical study of career defermination is probrbly to be found in Ginzberg and Associates' Occupational Choice? The authors suggest a four-part model of the decision process: ij reality factors and environment; 2) the influence of education; 3) emotional needs and desires; and 4) value selection. The data base of the study is about 100 case studies, traced through the decision stages over a period of about 20 years.

There exist scattered studies (two or three are published each year) rclating socio-economic status to some particular occupational classification. For example, E. K. Eric Gunderson and Paul D. Nc.lson ${ }^{8}$ also find a correlation between socio-economic status (as defined above) and white or blue collar job status among Navy men, significant on the . 001 level. ($\mathrm{X}^{2}=107.7$).

INDEX OF EQUALITY"OF EDUCATIONAL OPPORTUNITY

The index of equality of educational opportunity is a measure devised to indicate the degree to which a school system exercises and develops the potential of all students regardless of socio-economic background. The idea for such an index conzes from an article by James S. Coleman, who suggests that the measure of equality of educational opportunity is the degree to which each student is equipped at the end of school to compete on an egual basis with others, whatever his social origins. ${ }^{3}$ In otner words, schools are successful only insofar as they reduce the inextricability of a student's oppartinities from his social origins. Equality of educational opportunity implies schooling which will overcome the differences in the starting point of children from different social groups.

In ordel to compute an index of equality of educational opportunity, it is important to look at the change in achievenient differences among stuclent types during their school carcer. Only to the extent that a nroposed Title I Program lessens these achievernent differences by the time of graduation does it contritute to increased equality of educational opportunity.

Data available for the model's input are achievement scores for the socio-economic grcups to be considered, for first grade and a later grade cntrance. These will be symbolized as follows:

The model's output is an index with an interval of zero through one, by means of which different schools and school systems may, using a percentile scale, compare their relative success in improving equality of educational opportunity.

The first task in developing the model is to decide what constitutes absolute equality, and absolute inequality of opportunity. It is assumed that there is cne socio-economic group which begins with and maintains at least a sligintly higher average than other groups. Since a school clearly does not wish to reduce that higher average to the level of the other groups in order to achieve equality of educational opportunity, we can set that average as the standard toward which the school attempts to raise pupils of disadvantaged groups. Perfect equality of educational opportunity, may be considered to exist when the achievement lag of less advantaged groups decreases sufficiently each year for it to be absent by the twelfth grade.

Absclute inequality of educational opportunity is characterized, then, by the greatest lag theoretically possible; in such cases, there is no improvement at all in achievement level through twelfth grade age. Achievement ratings come from verbal and mathematical skill test scores, and there is no reason to assume that some disadvantaged group, thrcugh language, cultural, psychological, or other difficulties, might nor score a nearly constant low average throughout the school-age years in a school. with little inadequate space, teachers, attitude, insufficient rnaterials, or other severe problems.

These assumptions and definitions can be repres.⿰nted most easily by means of a graph. Figure liI. 6. 3 relates the five input variables to e, chosen to symbolize the index of educational opportunity.

71

Achievement

FIGURE Ill. 6.3
VARIOUS ACHIEVEMENT PATTERNS VS. GRADES

Since e is arbitrarily set to be between zero and one, and is to be used only for comparison and percentile purposes, it need oniy be the smallest possible linear function of the input variables to produce the characteristics given by the above assumptions and the graph. Thus, for e to vary as shown,

$$
e=1-\frac{\text { significant lag }}{\text { maximum possible significant lag }}
$$

iMore specifically, letting

$$
F=\text { permissible lag }=\left(\frac{12-j}{11}\right) \quad\left(A_{11}-A_{k l}\right)
$$

from the graph we have

$$
e_{j}=1-\frac{A_{i j}-A_{k j}-P}{A_{i j}-A_{k l}-P},
$$

or finally,

$$
e_{j}=\frac{A_{k j}-A_{k l}}{A_{i j}-A_{k l}-\bar{P}}
$$

with the addition that if the right side of the equation is greater than 1 , $e=1 . e_{j}$ is the incex measurcd in the j th grade.

An example will demonstrate the usc of the model, and the reasonableness of its outputs.

Suppose the rnost advantaged group in a school enters first grade at an achievement level of second grade, and a less advantaged group enters an achievement level of the first grade. We look at this same class in sixth grade, to find that the more advantaged group has a grade level of \dot{b}, and test the model with less advantaged levels in the sixtn grade of sixth, fifth-and-a-half, fifth, fourth, third, second, and first.

Given: $A_{i l}=2, A_{k l}=1, A_{i j}=6, j=6$

If:	$A_{k j}=6$	$51 / 2$	5	4	3	2	1
Then:	$e=1$	1	$44 / 49$	$33 / 49$	$22 / 49$	$11 / 49$	0
					$7 / 3$		
\therefore							

e is calculated for each class in each grade and for as many significant different socio-economic groups as desired, and may then be compared by simple percentiles with data from other schools.

72

BIBLIOGRAPHY FOR COMMUNITY EFFECTS

1. Coleman, James S. - "The Concept of Equality of Educational Opportunity" Harvard Elucational Review, vol. 38 number 1, 1968
2. Coleman, James S. - Equality of Educational Opportunity - OE-38001 Office of Education, U.S. Department of Health, Education, Welfare United States Government Printing Office, Washington, 1966
3. Coleman, James S. - "Equal Schools or Equal Students?" - The Public Interest, 1966, Vol. 4, pp. 70-75
4. Drabick, Lawrence W. - Perceived Sources of Influence upon Occupalional and Educational Expectations Educational Research Series, No. 8 Progress Report Soc. 50, 1967-Agricultural Experiment Station, North Carolina State University, Raleigh
5. Flanagan et al - One Year Follow-up Studies - University of Pittsburgh, Project Talent, 1966
6. Garrisor, Karl C. - "A Stuin of the Aspiration of Ninth Grade Pupils from the Public Schools of Georgia" - Journal of Social Psychology, vol. 69, number 2, 1966
7. Ginzberg \& Associates - Occupational Choice - Columbia Unive rsity Press 1951
8. Gunderson, E. K. Eric, and Nelson, Paul D. - "Social Economic Status and Navy Occupation" in Personnel and Guidance Journal, vol. 44, number 3, 1965
9. Hershenson and Roth - "A Decision Process Model of Vocational Development" - Journal of Consulting Psychology, vol. 13 number 3, 1966
10. Holland, J. C. - "A Theory of Vocational Choice" - Journal of Counseling Psychology, vol. 57, number 1, 1954
11. Jincks, Christopher - 'Social Stratification and Higher Education" in Harvard Educational Review vol. 38, number 2, 1968
12. Johnson, Lyndon B. - The Manpower Report of the President transmitted to the Congress, March 5, 1965
13. Killingsworth, Charles - Hearings before the Subcummittee on Employment and Manpower, United States Senate, Eighty-eighth Congress, First Session, September 20, 1963, part 5, pp. 1475-1479
14. Roe, Anne - "A New Classification of Occupations" - Journal of Counseling Psychology, vol. 57, number 1, 1954
15. Rothney, John W. M. - Cooperative Research Project No. SAE0231 Fducational, Vocational, and Social Performances of Counciled and Uncounciled Youth Ten Years after High School - University of Wisconsin, Madison, Wisconsin 1963
16. Silberman, Charles E. - "What Hit the Teenagers" - Fortune Magazine April 1965
17. Solow, Robert - The Nature and Sources of Unemployment in the United States - Uppsola, Almquist, and Websells, 1962
18. Stockin, Bruce C. - "A Test of Holland's Occupational Label Formulation" Eersonnel and Guidance Journal, vol. 42, number 6, 1964
19. Thompson, O. E. - "Occupational Values of High School Students in Personnel and Guidance Journal, vol. 42, number 6, 1964

III. 7 THE OUTPUT SUBMODEL

The output submodel is a subroutine which reorganizes the results of the preceding submodels and organizes it into a concise and easily interpretable form, containing the critical variables needed for evaluation. Comparison of the results of a baseline run with the results of a compensatory program, or between alternative compensatory programs, can be systematically and easily accomplished. The relevant quantities are displayed in exactly the sarne form in each case.

The output is designed to be concise, so that the user is not overwhelmed with voluminious or incomprehensible results. The quantities indicated for each type of student are the following:
by grade --
English Achievement, Math Achievement, number of truants, number of drop-outs.
Overall --
Numbers in various socio-econom:c strala and their expected and poteatial lifetime earnings. The index of equality of educational opportunity.
A sample of this output is shown in Figure V-12. One sheet of these results occurs for each student type, so that comparisons across types, as well as among programs for a given type, are possible.

CHAPTER IV

ESTIMATING PARAMETERS OF THE OECE MODEL

INTRODUCTION

Social Systems change; explanations of the causes and processes of change are the basis of all social theory. It is an obvious corollary to this fact that the empirical relationship between any two variables does not remain constant over time. The relationship changes as other factors affecting the variables change.

One of the most interesting types of relationship modifications occurs when knowledge of the relationship and its processes is imported to people operating in the social system. The first and clearest: evidence of this type of affect came in economic research describing paramuters and relalionships between variables in a markel siluation. Publication of findings changes the parameters in the market, because people use the information to try to operate mnre effectively in the market.

Educational systems are no doubt quite simiar to other social systems in these respects. Fmpirical relationships between variables change over time. Even if educators did not try to gain knowledge about educational relationships, the future parents schooled within the educational systems and political and technological changes in the society would change the empirical relationship. Educators are, of course, trying desperately to influence the educationel process.

A second and related point concerns differences between semi-autonomous educational systems which are operating at the same point in time. There is every reason to expect that the empirical relationship between the same variables in different educational systems at the same point in time differ in manner, although probably not to the sante degree that the relationships differ over time. This is likely because social conditions and knowledge input can and do differ among systems at the same point in time, just as these factors change within a system over time.

To the extent that a model of a system is based on empirical relationships among variables, rather than rationally chosen end tried relationships as in systems engineering, the model must be considered static. Although the model could be projected over time, the basis of projection depends on accurate knowledge of empirical relationships at several points in time. Projection of changes in these relationships, though possible in come cases, is a hazardous and usually unfeasible endeavor, especially since it is difficult to estimate the effect that knowledge gained from the model, whether correct or incorrect, will have on the process being modeled. In addition, it is apparent that a model used for a number of different but closeiy related systems must have as one parameter a relationship between types of systems and parameters of 1 elationships within that system. When such information is unavailable, or when no such definite relationship among different examples of the basic system exists, it is necessary to make different cstimates of relationship parameters for different situations in which the model is used.

These qualifications do not mean that model building is uscless, but are rather intended to provide a realistic approach to the development and use of models which are designed to reflect hybrid social processes. It is necessary to realize that: (1) "solution" or permanent statement of molel relationships is an unattainable goal in an evolving social situation; (2) a model is only good as the information which is used to set its relationships. Such information should therefore be as recent and as accurate as possible, and should reflect cha :acteristics of the specific system for which it is used; (3) refinement of the present OECE Model and developnicnt of more sophisticated models to replace it depend heavily on the output of basic research in education. The present model is, in many ways, more differentiated and elaborate than the informalion which is used to sel its parameters. It is the las in educational research information, rather than any lack of modeling capabilities, which is at present a constraint on model development. When better information on the nature of relationship between educational variables becomes available, the
the present model can be adapted to take such information into account (see Appendix C). In short, use of the OECE Model requires adaptation of the parameters to fit system variants. It also demands constant review of model relationships and actual relationsl:ps to detect changes resulting from changing social forces and from the inclusion in the system of greater knowledge of its workings.

NATURE OF THE OECE MODEl AND ITS PARAMETERS

The Office of Education Cost-Effectiveness Model has two basic design advantages by which the evolution of social systems and the need for revision, as discussed above, may be taken into account. The model has, first of all, both external (input) and internal (working) parameters and algorithms. An example will clarify this distinction. The instruction index (C) is a working or internal variable constructed through internal weightings and linear combinations of three other internal variables: instructional quality (TCHQAL), instructional intensity (TCHITN), and instructional duration (TCHDUR). These internal variables are themselves formed by weighting and combination, linear except in the case of instructional duration, of the input or external variables. In the case of instructional quality, recency of curriculum material and teaching experience are component variables. This characteristic of the model permits re-evaluation of the importance of various inputs without modification of the input relationships of the model.

If, for example, teacher experience were, in a hypothetical situation, to become a less significant factor in U. S. educational systems as a result of the decrease in the differences in teacher experience, this change could be modeled externally; less weight would be given to teacher experience and more weight would be given to other factors thought to have instructional value. Such an external modification would not alter the relationship of instructional quality and other internal variables, as long as the external weights were so adjusted.

Alternatively, modification of internal weights would assign
different emphasis to each of the internal variables, of instructional quality, instructional intensity, and instructional quality, instructional intensity, and instructional duration, without altering the manre r in which these variables are constructed from external variables. Even greater modification would be achieved by changing the algorithm by which the instructional index is related to other internal indices.

The design of the model, then, permits modification in any of several ways without altering the algorithm. New information pinpointing specific effects can be included without reworking major internal model assumptions.

A second major, advantageous characteristic of the model is that the value of all variables, both internal and external, ranges from 0 to 1 . This permits the use across semi-autonvinous systems without adjustment since data must be in some sense comparable before use as input. The more 'mportant related advartage of this characteristic is, however, that the parameters estimated for the model become the only basis for estimating the relative importance of different indices, as actual data range is already controlled. The implication of this becomes clear if the difference between a "filled" and an "unfilled" model is considered. In the case of a filled model, all variance in the output of the model is accounted for by the model inputs; there are no cases as, for example, of student achievement, which are accounted for by variables other than model inputs. This situation occurs by definition in each case where the maximum value of the weight sum is 1.0 . Those weights are set at values such that their sum is the maximum allowable. In the unfilled model case, at least some weights, the maximum sum of which is 1.0 , do not total that. It is also possible for the internal portion of the model to be filled while the external portion remains unfilled.
:These two related design characteristics, the external and internal indices and algorithms, and capacity for the model to be filled at one level and unfilled at another, provide a basis for a methodology of estimating the data weights to the OECE Model. This methodology approaches the problem of weight estimation
by studying the external model weights to reflect the current best knowledge of actual relationships, while internal weights are "filled" so as to utilize all external index ability to explain variance in model output.

Where information from educational research is unavailable, it is assumed that lack of information indicates a lack of relationship to achievement. While such an assumption is subject to revision, it is the safest and least biased way of resolving a dilemma stemming from the present paucity of high quality research on the causes of student achievement. In cases vhere information is available, the external weight is set equal to the proposition of achievement variance explainable by the variable. If that data is not available, but information on similar variables is available, estimation may be made on basis of similar variobles. Indices which are internal to the model reflect differential causal effects on different groups of input variables. Estimation for each series of internal weights is designed so that the weights total 1.0. In this manner full use is made of information once it is in the model. The size of each weight for a category of inputs is determined by the proportion of variance subsumed under that category. An example of this procedure is shown in Figure IV.1. Thus, input weights are determined by research findings, and internal or working weight by the proportion of variance explained by a given index's input; the sum of internal weight equals 1.0 .

Two final methodological notes are in order. First, the above. method of weight estimation, and for that matter, the OECF Model as presently designed, do not take into account the fact, discussed in the Coleman Report ${ }^{1}$, that students of different ethnicity have achievement rates which are differentially sensitive to variations in school quality. This means that a given model weight may itself differ depending upon the ethnic composition if the population for which the model is being

[^2]used. The model is presently weighted for use within school systems in which Negroes account for 20% of the student population. This is accomplished by attributing appropriate proportional significance to research reports of variance in achievement attained by blacks and by whites. Should the model be used, for example, in a predominantly Puerto Rican school system, the weights for instruction and service indices, as well as impedance, would be increased somewhat, as Puerto Rican pupils are more sensitive to variations in school quality and a^{\prime} : the same time have greater barriers to education than do other ethnic groups.

Secondly, the present methodology was developed to best utilize present educational research in the OECE Model. Its major deficiency is that the sum of all external weights is a maximum of 1. 0 , whereas if information about the relative importance of such internal variables as teacher quality and teacher intensity were known, this under determinancy could be eliminated. The deficiency does not sexiously affect model output, as the model does reflect accurately the relative impoinnnce of input variables, to the degree that such information is known.

PARAMETER ESTIMATES

The initial setting of weights for the OECE Model is based in large part on the "Coleman Report"", the only large scale national study in which the causes of student achievement are considered in a systematic, quantitative fashion. The information from that report is, at cimes, supplemented by various data from Title I evaluations. In some cases, where information is unavailable or incomplete, cortain assumptions are made about the educational process, and estimates of weights are made on the basis on the specified assumptions. All weight estimates and their underlying assumptions should be subject to change and to adaptation to the needs of the individual user (see Appendix C).

2Ibid. , ospecially PP. 290-329

SCHOOL FLOW PARAMETER ESTIMATES

The school flow submodel describes the achievement, distribution of students from grade to grade on conditional probabilities (see Chapter III.5). These conditional probabilities are lacated in the MARKOV Matrix, and are the only parameters of the school flow submodel which have to be estimated. The present astimation is a generalized one based on some empirical findings in a California school district and on certain assumptions about changes in transitional probabilities from one grade level to another. Although the absolute lcvels and distribution of the transitional probabilities may differ from school system to school system, the assumptions made in the present estimation are probably sufficiently general to be usable in most situations.

The submodel requires a matrix of probabilities of the likelihood that the student will, for example, be above or below a given achievement level in English and Mathematics, on the basis of his performance in each of the courses in the preceding grade (see Figure IV. 2). The sum of probabilities in a row should equal 1.0 if all students make the transition, as all alternative possibilities are present. The California data is used in setting up the Markov Matrix in the first transition. Assumptions are made as to the manner in which major changes are affected from the first to the sixth and last transition:

1. The probability that a student will be below threshhold in both courses in the subsiequent grade, if he was below threshhold both courses in the previous grade ($F F, F F$), increases substantially from the first to the last transition. Thus, failure at one grade increases the probability of failure at a later point.
2. The probability of passing both courses, if both courses were passed in the previ uus year (PP, PP) increases linearly at a very slight rate from a high base line level.
3. The probability that fallure in one course will lead to subsequent failure in that course ($F P, F P$) or ($P F, P F$) increases over time. Failure in a subject increased the l!kelihood of continued failure in that ccurse.
4. If a student fails one course and passes the second, the probability that he will subsequently fail both courses is greater than the probability that he will fail the second and pass the first.

On the basis of these assumptions, the Markov Matrix has been constructed and is presented in Figure IV -3.

INSTRUCTION INDEX PARAMETERS

The beta weights requiring estimation for the Instruction Index include weights of input variables for the Instructional Quality Index and the Instructional Intensity Index, and weights for these internal indices and the Instructional Duration Index, which are combined linearly to form the Instruction Index. Although the OECE Model is designed so that different weights may be assigned for each course and grade, present information permits no differentiation between courses, and only slight differentiation by grade.

There is not usable information available on the impact of recency curriculum material on student achievement. Therefore,

$$
T \Omega W_{1, j}=0.00
$$

for all subjects, j, and all grades.
The Coleman Report is on the whole rather pessimistic about the effects of school variables on pupil achievement:

It is known that socio-economic factors bear a strong relationship to acadernic achievement. When these factors are statistically controlled, however, it appears that the differences between schools account for only a ${ }_{3}$ small fraction of the differences in pupil achievement. ${ }^{3}$

[^3]After discussing school facilities and curriculum and their lack of relation to pupil achievement, the report continues,

The quality of teachers shows a stronger relationship to pupil achievement. Furthermore, it is progressively greater at higner grades, indicating a cumulative impact of the quality of teachers in the school on the pupil's achievement. Again, teacher quality seems more important to minority achievement than to that of the majority. 4

The teacher variable used by the Coleman Report combines a number of variables, including the teacher's family educational level, his years of experience, his own educational level, and his score on vocabulary tests. The OECE TCHEXP weight $\operatorname{TQN}_{2, j}$ are based on this variables and on the percent of student achievement gains it explains. TQW $2, j$ is a weighted mean of the percentage variance between teachers of blacks and whites according to the Coleman Report. ${ }^{5}$

Such a procedure provides:
$\mathrm{TQW}_{2, j}=0.01$ for grades $1,2,3$, and 5
$\mathrm{TQW}_{2, j}=0.02$ for grades 6,8, and 10.

Weights for the Instructional Intensity Index were estimated as follows:

$$
\begin{aligned}
& \operatorname{TIW}_{1, j} \\
& \mathrm{TIW}_{2, j} \\
& \mathrm{TIW}_{3, j}
\end{aligned}
$$

were all subequal to 0.00 for all grades and subjects. $\mathrm{TIW}_{4, \mathrm{j}}$ (the weight for TCHTUD-budget for teaching aids) was set at:

$$
\mathrm{TIW}_{4, j}=0.01
$$

${ }^{4}$ Ibid. , 'P. 22
${ }^{5}$ Actual data is from. Table 3.25.3, in Ibid., P. 319.
for grades $1,2,3,5 ;$ and 6 .

$$
\operatorname{TIW}_{4, j}=0.0
$$

for grades 8 and 10.
TIW $_{1, j}$ is to reflect the importance of the teacher/pupil ratio (TCHRS). According to the Coleman Report, that ratio "shoved a consistent lack of relation to achievement among all groups under all conditions. 116

The second Instructional Intensity Index woight indicatcs the importance of a text/pupil ratio (TEXTS) to student achievement. There is little information on this relationship; that which was available ${ }^{7}$ indicated that it had no cffect on student achievement.

No information was available concerning the impact of a desk/ pupil ratio (DESKS), end the weight for this variable ($\mathrm{TI}_{3, j}$) is therefore set to 0.00 .

The only one of the four variables included in the Instruction Intensity Index which does seem to influence achievement is TCHBUD, or Budgets for Teaching Aids. The Coleman Report noted a slight relationship, less than that of the teacher variables, with student achievement. This effect seemed to disappear in later grades. ${ }^{8}$

The third internal instructional variable, of Instructional Duration, requires no weight. It is, therefore, for all purposes a "filled" external variable, and is only weighted internally. The weight of this variable in relation to Instructional Quality and Intensity was weighted at:

$$
T W_{3, j}=0.10
$$

The other internal Instructional weight were estimated by the method described in Figure IV-1 yielding:
${ }^{\text {llid. }}$, P. 312
${ }^{7}$ See for example "Title I Interim Report", Iowa Educational Informätion Center, University of Iowa, Iowa City, Iowa (Mimeo) P. 9. ${ }^{8}$ Coleman, op. cit. Table 3.24.2, P. 314.

$$
T W_{1, j}=0.45
$$

grades 1, 2, 3, and 5,

$$
T W_{1, j}=0.60
$$

grades 6;

$$
T W_{1, j}=0.90
$$

for grades 8 and 10; and

$$
T W_{2, j}=0.45
$$

for grades 1, 2, 3 and 5;

$$
T W_{2, j}=0.30
$$

for grade 6;

$$
T W_{2, j}=0.00
$$

for grades 8 and 10.
Figure IV-4 presents the weight for the Instructional Index and its components in tabular form.

SERVICE INDEX AND SERVICE EFFECTIVENESS INDEX PARAMETERS
The service weights are designed to reflect the relative importance of different compensatory service input variables, and to weight the relative i:nportance of indices computed from these inputs when they are combined to create a service index. The weights requiring estimation for the Service Effectiveness Index estimate the impact of various impedance factors on a student's achievement.

Service Quality Weight estimates the impact of a program on achievement if the service offered is new ($S Q W_{1, j}$). The "Hawthorne Effect" indicates that a new service affects the target population more noticeably than does an on-going program. This is probably more the result of the additional attention paid to the target population than a reflection of the quality of the program. On the other hand, it is certainly possible that a new program may be better fitted to 3 target
population than one that has remained unchanged over a number of years. Without additional research, these and other possibilities cannot be evaluated. $S Q W_{1}$ is, therefore, set at 0.00

On the other hand, the Coleman Report indicates that no school variable has as great an effect as teacher quality ${ }^{9}$, the effect of which is already quite small. $S Q W_{2}$ is therefore set at 0.01 , a level equal to the impact of teacher quality in lower grades, and half of the level of impact in higher grades.

Service Intensity Index weights are the parameters by which are set the impact on students of the ratios of paraprofessionals to students, space per student, and cost of budgeted materials per student. There is no evidence on the importance of space, so SIW $_{2}$ is set to 0.00. The other two weights, $S Q W_{1}$ and $S_{Q} W_{3}$, are both set at 0.01 on the basis of the Coleman Report. 10

Finally, the Service Weights, which are used in the function combining the different service industries, are determined by the inethod described in Figure IV. 1 and in the text relating to that figure. They are:

$$
\begin{aligned}
& \mathrm{SW} \\
& \mathrm{SW}_{2}=0.30 \\
& \mathrm{SW} \\
& \mathrm{SW}_{3}=0.60
\end{aligned}
$$

Impedance weights relate the student's level of achievement to the degree to which he is, by his background, disadvantaged. According to Coleman and others, these environmental factors account for by far the greatest part of variation in student achievement. These weights are therefore substantially greater than those which have been discussed up until this point. The first impedance factor measures disadvantages due to a parental income of $\$ 3000$ or less

[^4]per year. On the basis of the Coleman Report ${ }^{11}$, this weight is estimated to be 0.04 . The second weight $\left(Z W_{2}\right)$ is set, on the same basis, at.12. Although no information is available as to the effect of a physical handicap on a student, it can be assumed that it hinders achievement. ZW_{3} is, therefore, set at 0.01 .

The fourth impedance weight is designed to reflect the effect on a student of family disruption. Both the Coleman Report ${ }^{12}$ and Alan B. Wilson ${ }^{13}$ find that this has no effect on the student's achievement. The weight is, therefore, set to 0.00 .
$Z W_{5}$ and $Z W_{6}$ weight students' achievement lags by grade 12. Coleman finds that student body quality has an important effect on student achievement; calculations based on data in Equality of Educational Opportunity ${ }^{14}$ indicate a setting of .04 for ZW_{5}. The impact of a student's own achievement lag is set at 0.02 , half the other value, because while data on this is lacking, it must still be considered imporlant.

Figure IV. 5 presents the Service Weights in tabular form.

[^5]Figure IV, 1: A Hypothetical Example of Weight Summation.
INPUT WEIGHTS
INDEX WEIGHTS
$\mathrm{TQW}_{1, j}=.08^{\circ}$
$\mathrm{TQW}_{2, j}=.04$
SUM
$T W_{1, j}=.60$
$\mathrm{TIW}_{1, \mathrm{j}}=.01$
$\mathrm{TIW}_{2, j}=.01$
$\mathrm{TIW}_{3, j}=.03$
$\mathrm{TIW}_{4, j}=.01$
SUM $=.06$
Instructional
Duration
Estimated Sum $=.02$
$T W_{3, j}=.10$
SUM $=1.00$

Figure IV, 2: A. Hypothetical Markov Matrix of Transition Probabilities from One Grade to the Next.

Performance in Subsequent Grade
\therefore

	Fail-Fail	Fail-Pass	Pass-Fail	Pass-Pass	
Performance	Fail-Fail	.50	.20		
in	Fail-Pass	.10	.25	.20	.10
Previous	Pass-Fail	.10	.10	.10	.55
Grade	Pass-Pass	.05	.05	.25	.55

Figure IV - 3. MARKOV Matrix of Probability of Subsequent Grade Outcome, Given Previous Grade Outcome.

Transition	Previous Grade	$\because \mathrm{TF}$	FP	PF	PP
1	FF	. 60	. 10	. 10	. 20
	FP	.15	.30	. 10	. 45
	PF	. 10	$\because 10$. 30	. 50
	PP	. 05	. 10	. 10	. 75
2	- FF	. 70	. 09	. 07	. 15
	- FP	. 17	. 40	. 09	. 34
	PF	. 12	. 09	. 40	. 39
	PP	. 04	. 08	. 08	. 80
3	FF	. 78	. 06	. 05	. 11
	FP	. 19	. 48	. 08	. 25
	PF	. 14	. 08	. 48	. 30
	PP	. 03	. 07	. 06	. 84
4	FF	. 84	. 04	. 04	. 08
	FP	. 21	. 54	. 07	. 18
	PF	. 16	. 07	. 54	. 23
	$P P$. 02	. 06	. 05	. 87
5	FF	. 88	$\therefore 03$. 03	. 06
	FP	. 23	. 58	. 06	. 13
	PF	. 18	. 06	. 58	. 18
	PP		. 05	. 05	. 88
6	FF	. 90	. 03	. 02	. 05
	FP	. 25	. 60	. 05	. 10
	PF	. 20	. 05	. 60	. 15
	PP	. 02	. 05	. 05	. 88

FF - Fail English, Fail Math; FP - Fail English, Pass Math; PF - Pass English, Fail Math; PP - Pas English, Pass Math.

Erade	Course	$\begin{gathered} \mathrm{TQW}_{1} \\ (\mathrm{RECEN}) \end{gathered}$	$\begin{gathered} \mathrm{TQW}_{2} \\ (\mathrm{TCHEXP}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{TIW}_{1} \\ \mathrm{rCHRS} \end{gathered}$	$\begin{gathered} \mathrm{TIW}_{2} \\ \mathrm{TEXTS} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{TIW}_{3} \\ \text { (DESKS }) \end{gathered}$	$\begin{gathered} \mathrm{TIW}_{4} \\ (\mathrm{TCHBUD}) \end{gathered}$	$\begin{gathered} \mathrm{TW}_{1} \\ (\mathrm{TCHQAL}) \end{gathered}$	$\begin{gathered} T W_{2} \\ \text { (TCHITIN) } \end{gathered}$	$\begin{aligned} & \mathrm{TW}_{3} \\ & (\mathrm{TCHDUR}) \end{aligned}$
1	1	. 00	. 01	. 00	. 00	. 00	. 01	. 45	. 45	. 10
	2.	. .00	. 01	. 00	. 00	. 00	. 01	.45	. 45	. 10
2	1	. 00	. 01	. 00	. 00	. 00	. 01	. 45	. 45	. 10
	2	. 00	. 01	. 00	. 00	. 00	. 01.	+45	. 45	10
3	1	. 00	. 01	. 00	. 00	. 00	. 01	. 45	. 45	. 10
	2	. 00	. 01	. 00	. 00	. 60	. 01	. 45	. 45	10
5	1	. 00	. 01	. 00	. 00	. 00	. 01	. 45	.45\%	10
-	2	. 00	. 01	. 00	. 00	. 00	. 01	. 45	45	10
6	1	. 00	. 02	. 00	. 00 *	. 00	. 01	. 60	. 30	10
:	2	. 00	. 02	. 00	. 00	. 00	. 01	.60	. 30	10
8	1	. 00	. 02	. 00	. 00	. 00	. 00	. 90	. 00	$\square .10$
	2	. 00	. 02	. 00	. 00	. 00	. 00	. 90	. 00	. 10
10	1	. 00	. 02	. 00	. 00	. 00	. 00	. 90	. 00	. 10
	2	. 00	. 02	. 00	. 00	. 00	. 00	. 90	. 00	. 10

Figure ZV-5: Service and Service-Effectiveness Index Weights.

SQW	1	2
	.00	.01

SIW	1	2	3	
		.01	.00	01
	\ddots			
SW	.30	.60	10	

| ZW | 1 | 2 | 3 | 4 | -5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | .04 | -12 | .01 | .00 | .04 | .02 |

CHAPTER V

ANALYSIS OF SAMPLE MODEL RUNS

INTRODUCTION:

One of the major problems in "software" development is that the final product is often in a form difficult to use. The OECE Model is designed to be used; it can, moreover, serve several purposes. The primary purpose for the development of the model was to provide assistance to administrators in allocating funds to education. The benefit of the Model's use is more than mechanical, as it also suggests some of the criteria by which educational programs should be measured. In addition, use of the model will provide information by which the model itself can be refined and improved.

The model must satisfy five major requirements if it is to be used:

1. The model must "work." When information is ied into a computer programmed with the model, the program must function correctly.
2. The model must use data which is easily obtained.
3. The model's output must be comprehensible.
4. The model's output must be accurate.
5. The model must be available to administrators.

In this chapter, the usability of the OECE Model will be examined in terms of the first four criteria. The availability of the model must of course be determined by the Office of Education. The other criteria are examined in this chapter by running the model for a sample school district, both before and after the implementation of compensatory education programs. Since performance of the scheol district and its compensatory education programs have already been evaluated, the validity of the model can be tested with some accuracy.

USING THE MODEL: A SAMPLE CASE, THE DATA BASE
Data for the OECE Model test run was obtained for a school district serving a city with a population of approximately 140,000 . Runs of the model were made for each of two different assumptions, a baseline run and another which examined changes due to compensatory education. "The first assumption
was based on a school district's own Markov matrix of probable transitions of students from one grade to another. The second used the generalized matrix developed for the model (see Chapter IV). Certain data, the student/desk ratio, for example) was unavailable. In these cases, either the conditions were assumed to be totally satisfactory, or the condition was assumed to be average.

The grade-specific data base for the sample case is shown in Table V-1 for both baseline and compensatory education runs. Much of the data needed for the model, although it was probably available in the school district, was not readily accessible. Moreover, most data was not available by course, was entered for both English and Mathematics courses.

Other OECE Model input files require a variety of types of information which are not used in indices, and therefore do not require manipulation before insertion into computer input files. Included among these is DIS, the percentage of students with a given disadvantage factor (sce Table V-2). This information is based on teachers' evaluations of their classes. Other needed information includes the number of grade levels with test scores available (7) the number of student types (4), the initial grade in which compensatory education programs were implemented (grade 2), and national test norms in grade level equivalents for the month in each grade in which the test was administered by the schools.

Several otservations should be made on these pieces of information. First, test scores were not from the same tests for all grades, but all tests were converted into grade level equivalents. Mcrcover, some tests did not test Mathematics and English achievement separately; it was assumed in such cases that achievement scores were equivalent for the two categories. Second, achievement data was only available by school. Schools were predominantly Negro, predominantly Mexican-American, or predominantly white. Data from the predominantly Negro schools was used for the first student type category (i.e., "Negro, income less than \$3000"); data from Mexican-American schools was used for the second student type; and data for predominantly white schools was used for the fourtl, student type category. This oystem of assigning school data to student type category was used throughout the other files, so thet "student type" actually refers - to school type.

Other input files which require school system data are presented in Tables $V-3$ through $\nabla-7$. Several points should be noted. The number of students of each type in the grade level before the compensatory education program was implemented (i.e., grade 1) was set arbitrarily at 1000 , so that, the effect of programs on an equivalent number of students could be measured for each school type. The initial grade level achievement scores are the same for English and Mathematics courses, as the achievement test given at grade 1 does nct differentiate between the two fields. The same is true for rates of achievement and the initial achievement distribution of students: In addition, it should be remembered that passing and failing are defined as achievement above and below, respectively, the national average. Finally, although there are two courses in grades 1, 2, 3 and 10, achievement tests do not distinguish between them.

Additional data required by the model concerns the characteristics of the compensatory services offered. This information, as presented in Table $V-8$, is relatively complete and self-explanalory.

ADAPTATION OF THE DATA BASE FOR MODEL USE

The data base which was presented above has a number of deficiencies. Some of these shortcomings can be explained by a lack of direct access to sources of data, and would not occur during normal use. Others will no doubt be common protlems when the model is actually used. All these deficiencies are surmountable. Indeed, in using a model which is to be applied to many different situations, as is this one, the adaptation of data is a neces sary task, particularly so because all input indices must vary. between 0 and 1.

This task is two-fold: The available data must first be converted into indices which can be used in the model, and the indices must be estimated where data is unavailable.

For the first of these procedures, a method of converting data into indices must be decided upon and then used consistently. The user is free to adapt the available data to tne model by any method he considers legitimate. A brief description of the methods used for each of the indices in the sample case will give some idea of the range of methods which can be used. The indices derived by these methods are presented in Ta'sle V-9.

The TCHEXP (Teacher Experience) Index was designed to reflect the fraction of the teacher population with less than two years of teaching experience, as this was thought a means of differentiating between experienced and inexperienced teachers. By using the mean for years of teaching experience, the standard deviation from that mean, and the number of teachers, this figure was computed. A user of more accurate information would not have to resort to these methods.

To derive the TCHRS (Teácher/Pupil Ratio), a range of ratios from extremely poor ($1 / 40$) to optimum (1/10) was established. The index was then computed by the following method:

$$
\text { TCHRS }=1-\frac{\text { (actual number of pupils per teacher }-10)}{40-10}
$$

so that a school with one teacter to every ten pupils would have the maximum index value, 1.0 .

The Instructional Budget Index was determined by setting the baseline value for which data was unavailable to equal the position of the state which district is in ams a g all states in expenditures per pupil. Thus,

For the compensatory education run, the amount by which the instructional budget would increase the district's per pupil expenditure was calculated. In this way a new expenditure/pupil ratio for the district was determined and substituted for the expenditure/pupil ratio based upon the state which contains the district.

Service variables were set to 0 for the baseline run. For the non-baseline run, indices were computed only for Negro and Mexican-American student types, since the service programs werc only implemented in those schools. Thus, service variables for whites (student type 4) were set to 0 for all runs.

Service data which required manipulation into service indices included: the paraprofessional/pupil ratio, the space available for the service, and tho service budget. These indices were computed by various methods.

The optimum number for paraprofessionals necessary for adequate performance of the service was estimated, and the actual number used for the service was divided by this number to yield PARA.

Optimum amount of space needed for performance of these services was likewise estimated, and actual space used divided by optimum spa $: e$ needed, to producl SPACE.

In order to estimate SBUDGT, the budget cost for the service was broken down into the cost per paraprofessional, the cost per unit of space, and the cost per student aided by the service. An optimum budget was calculated using this data, the optimum ratios employed in the computation of PARA and SPACE, and the numberr of stuitents who needed the services. The actual budget figure was the n divided by the optimum figure to produce SBUDGT.

For a substantial number of the indices needed for model operation, data was not readily available. In these cases, one of two assumptions was made. Either it was as sumed that the functions specificd by the variable were being performed very well, in which case the index was set at . 99 or 1 , or it was assumed that the system was performing with average adequacy, and the value was therefore set at .50 . The only case where neither of these assumptions was made was in the estimation of TEXTS, where the index value was set at, 90 for all cases. It is important to note here that as long as an index is made constant for all cases, its effect on individual indices is constant, and the value at which it is set is of no great consequence.

The first assumption, of very good performance, was made for recency of curriculum material, desks!pupil, instructional hours/day, days/week, weeks/year, while the second assumption (of average adequacy) was made for service hours/day, days/week and weeks/year. The input index values for instructional indices are listed in Table $V-9$, and those for service indices in Table V-10.

ADAPTATION OF THE MODEL FOR USE WITH THE DATA

The OECE Model does not require any modification to be run with input indices as computed above. If, however, the user is aware of the importance of certain factors not heavily weighted by the model, or if he
wants to test a hypothetical situation in which a certain factor is given a disproportionate weight, the modification procedure, as outlined in Appendix A, is a relatively simple one. For the present sample run, it was decided to leave all weights at their model settings for both baseline and compensatory education runs.

Data available from the school district being studied made it possible to alter the Markov matrix of transitional probahility of achievements to reflect actual transition occurences within the school district (see Table V-II), and so a second model run was performed. Thus, in all, four different model runs were made: 1) baseline with generalized Markov matrix; 2) compensatory education with generalized Markov matrix; 3) baseline with the school district-specific Markov matrix; 4) compensatory education with the school-district-specific matrix.

MODEL OUTPUT

MEANING OF OUTPUT ITEM
Any run of the OECE Model produces one page of output for each type of student. Table V-12 contains a typical page of model output. Information is of several lypes. First, the number of truants and dropouts, and the achicvement scores in English and Mathematics for all students are predicted for each grade level beyond the initial grade level. Thus, in the sample case, these data are presented for six grades. "Equality of Educational Opportunity" is predicted for grades for which output is requested in the model. Finally, a relative measure of potential and expected lifetime earnings is reported for dropouts at various grade levels and for graduates going into each of three activities. Mean potential and expected lifetime earnings are also reported for the student types. Each of these measures requires some brief explanation. Grade is a real number rather than an integer, so that the time year of testing can be taken into account. The achievement scores are for all tests given, and are converted into grade level equivalents. Truants describe the rate of truancy, an effect of achievement lag, as was diocussed in earlier chapters. Dropouts is also based on achievement lag. "Equality of Education Opportunity" is based on Coleman's concept of the relationship between school achievement and

1
socio-economic background, and is a function of the difference in expected achievement for different student types. Higher levels of the index denote greater equality of educational opportunity, Fiually, lifetime earnings are projected for several levels of educational achievement and for graduates. Potential lifetime earnings denotes the earning possible if full employment is assumed while expected lifetime earnings is a measure which takes the probability of unemployment into account.

INTERPRETATION OF RUN RESULTS

The output measure discussed are not absoiute: They do not predict the absolute changes, as for example, in achievement or earnings, but are computed such so that figures are comparable across a given data base, both among student types, and for a given student type from baseline to compensatory education situations. The simpiest (and probably most legitimate) interpretation of model output involves the latter type of activity, in which comparisons aremade for each type of stucient. The former method, of comparing results across the student types, can only be initiated after differences within each type are determined, since comparison of absolute levels does not have a great deal of significance within the model.

USING THE GENERAIIZED MAPKOV MATRIX

Tables V-12 through V-17 present model output for the baseline and compensatory ed,rcation runs of the OECE Model. Output for "whites .. less than $\$ 3000$ " is not included since student type was used to represent school type, and there were no schools of this type.

A comparison of baseline and compensatory education output indicates that overall changes are minimal. There are slight (.01) decreases at some grade levels in achicvements for the Negro and Mexican-American schools, and increases of the same magnitude for whites in certain grades. The absolute level of achievement becomes progressively higher than the Negro level for Mexican American and white schools. Truancy and dropout rates do not change at all, while equality of educational opportunity decreases slightly for Negroes in English, and for Mexican-Americans in Mathematics. In addition, thereis a small decrease in potential and expected lifetime
earnings for Negroes and Mexican-Americans, and a small increase for whites. If the model, its weighting and Markov matrix and its inputs are assumed to reflect accurately the school district for which the model is being run, several conclusions are in order. First, the rate of achievement differs in schools which are predominantly Negro, Mexican-Amezican. and white. Negroes show a lower level of achievement, while whites have the higher grades. Secondly, the effect of the compensatory education program. on the school system is minimal. All changes are extremely small. Thirdly, these minimal effects are slightly positive for whites (who already enjoy equality of educational opportunity), and slightly negative for those who most need improvement in cducation, i. e., Negroes and Mexican~ Ansericans. The validity of these corclusions will be examined after the results of the second series of the model runs are described.

RUNS USING THE SCHOOL DISTRICT-SPECIFIC MARKOV MATRIX

The second series of model runs utilized a Markov Matrix which reflected as accurately as possible the actual trarısitional probabilities of passing and failing in the school district for which the model was being run. Model output for these runs in included in Table V-18 through V-23. On the whole, these runs showed a stronger positive effect of compensatory cducation programs in tlle disadvantaged populations.

Achievement is a case in point. Although achievement declined somewhat (for "Negroes-less than $\$ 3000$, ") from the baseline to the compensatory education conditions for grades 3,5 , and 6 , there was an increase for this group in grades 8 and 10 . By grade 10 , there was a concommitant increase in equality of educational opportunity. The pattern is quite similar for Mexican-Americans and for "Negroes-more than \$3000." These schools showed a decrease in achievement in grades 2, 3, and 5, and a substantial increase in the later grades. As was the casc with Negroes, equality of educational opportunity was increased. Finally, whites, unlike the other two groups, showed practically no changes in achievement from the baselinesto the compensatory education situation.

If this eccond series of model run is taken as an accurate and undistorted reflection of the system's actual operation, conclusions would
differ significantly from those based on the first run. 1) The differential between Negro and the Mexican-American achievement is substantially smaller in most baseline and compensatory education cases than when the generalized Markov matrix was used; 2) Moreover, the differential between Negro and Mexican-American achievement rates and those for whites is not as great as in the first series of model runs. 3) The overall effect of compensatory education programs seems, moreover, to be significant. Although the effect in earlier grades is somewhat negative, there is a clear increase in achievement by Negroes and Mexican-Americans in the later grades.

COMPARISON OF THE RUNS, THEIR PREDICTIONS AND KNOWN RESULTS
Conclusions drawn from the two series of runs differ bersuse of the differences between the Markov matrices. Since no other input was changes, all differences in results must stem from this difference. The impact of the Markov matrix may be summarized briefly: the level of achicvement for any grade, a course and group, is in part dependent upon the Markov atrix, and changes from the baseline to the compensatory education situation aye in part functions of the matrix used.

It is beyond the scope of this chapter to deal with the mathematical mechanics of a Markov matrix. Nonetheless, it is important to understand why different matrices has such a strong influence on model resulis. The matrix takes students at one grade level with specific pass-fail characteristics and, according to the probabilities for students in that previous condition, assign an appropriate number of students from that condition to each of the possible conditions at the next grade level. When this is done for successive grade transitions, there is a possibility of progressive movement into certain categories. This drift is a function of both matrix design and original achievement (i.e., pass-fail) distribution of students.

Differing results in the two model runs may be explained in the following manner: baseline disiributions of student achievement are influenced by.the two matrices in different ways producing certait: "drift" patterns. Specifically, the initial distribution of white students produces a drift to excessively high achievement compared to other groups when the generalized Markov matrix is used for the baseline run. This matrix is virtually
unresponsive to changes in achievement distribution caused by implementation of compensatory education programs. On the other hand, the district-specific matrix more accurately reflects the baseline achievement distribution of each type of student at successive grade level; the drift is one that accurately reflects trends of student populations. This may be seen from the comparison of the district-specific Markov model output in Tables V-18, V-20 and V-22. with: actual achievement rates for students in the district (in Table V-24). The district-specific Markov matrix is also far more responsive to changes in student achievement distribution which result from compensatory education program implementation. The Markov matrix $i \approx$ shown to be important because of inherent characteristics which have strong effects on model results. The inaccurate drift of the matrix seems to vary along two dimensions: 1) inaccurate drift in reflecting baseline achievement levels, and 2) inaccurate drift in responding to changes in achievement distributions. The two Markov matrices used in this study are overly-responsive, the generalized matrix in predicting baseline achievement, and the district-specifi: matrix in reflecting shifts in achievement because of compensatory education programs. Matrices could similarly be under-responsive.

The effect of compensatory education programs projected by the moclel with a district-specific Markov matrix has an over responsive drift, as shown when the model projections are compared to actual program performance.

An evaluation of effectiveness of the compensatory programs within the district demonstrates that achievement rates in all district schools are declining either because of an influx of families whose children have lower achievement rates, or because of some internal process. However, schools with compensatory education programs were found to have achievement rates declining at a lower rate than the non-compensatory education schools (see Table V-24). The effect seems minimal and only significant by the third grade. Moreover, an inhibited rate of decline rather than an actual increase distinguishes the compensatory education schools from the other schools.

The only shortcoming of the district-specific matrix model seems to be that it predicts an effect greater by a substantial margin than that which actually occurs. There are two possible explanations for this occurrence.

It may be that the district-specific Markov matrix is too responsive to changes in student a.hievement distributions. If this is the case, the matrix can be stiffence or made more stable. It is also possible, although not likely, that the mode! places too great an emphasis on the impact of compensatory education. Further research and extensive use of the model will be necessary before these alternative explanations can be evaluated, whichever is the case, it is essential to keep in mind the adaptability of the model, which can easily withstand changes resulting from cither conclusion. Furthermore, as was emphasized earlier, the OECE Model was designed to show relative changes in effect rather than the absolute magnitude of the 3 e effects.

SUMMARY AND CONCLUSIONS

This chapter has focused on the importance of the OECE Model as defined by five criteria:

1) the model "works,"
2) input requirements are feasible,
3) output is interpretable,
4) output interpretations have validity
5) potential users have access to the model.

The last criterion cannot be evaluated at present. The other four have been tested with actual data. From results at these tests, several comments may be made concerning the model's effectiveness.

First, it is evident that the model "works" in the very concrete programming sense. When it is run with input requirements satisfied, it produces output accurately and efficiently.

Feasibility of input requirements also seerns to be satisficel critc:ion. Although not all data asked for by the model was obtained, inability to acquire this data was resulted primarily from lack of access to data sources, a problem which would not occur for users closer to data sources. Moreover, where data was unavailable, it was possible to make estimates which did not effect model results. Therefore, input requirements are feasible because even if only knowledge of one variable is available, dummy data may be substituted for missing variables, and the model will produce predictions
based on one real variable.
A second phase of input to the model requires construction of indices rangeing from 0.0 to 1.0 for each of the variables. Although this job requires some imagination on the user's part, it is a task which can be accomplished in any of a variety of ways, depending upon the user's need for and/or ability to use sophisticated methods.

The third criterion is output interpretability. Since two sets of output were produces, this characteristic is demonstrated. Each set had interpretations which seemed to logically follow from comparison of baseline to non-baseline output and comparison of these changes for various student types.

The interpretations which resulted from the two sets of model runs differed substantially. These differences raised the question of model validity. It was shown that the conflicting interpretations resulted from the use of Markov matrices which possessed different "drift'qualities. A comparison of interpretations with actual results of compensatory education programs in the school district indicated that when the model was run using a district-specific Markov matrix, the results were fairly similar to actual results. Differences were quantitative, not qualitative.

Quantitative inaccuracies are thought to result from one of two characteristics. A Markov matrix may be so specific for achievement patterns in a particular district that achievement distribution variance results in drift patterns. In addition, weighting of model parameters may suggest a greater influence for compensatory education programs than actually exiscs. Whichever of this occurs, it is evident (as discussed in Chapter IV) that the validity of a model is dependent not only on the algorithms which relate its terms, but on the weighting of terms and the accuracy of inputs. Therefore, if the model is to maintain and increase its validity and relevance, its weights must be continually adjusted to reflect applications and emerging changes in the strength of relationships. This is especially important if the model is made available to users who report their methods and findings.

Mean textbook publication date
Teacher Experience (years)

Teacher/Pupil
Ratio
Text/Pupil
Ratio
Desks / Pupil
Ratio
Instructional
Budget ($\mathrm{X} \$ 1000$)*
Mean class time
Hours
Days
Weeks

Not available

6.1	6.1	6.4	7.9	6.1	6.1	6.4	7.9
27	27	23	22	. 27	27	23	22
Not	ailab			Not	ilab		
Not	ailab			Not	ilab		
0	0		70	80	0	31	70
Not available				Not available			
"				"			
\because				-			

TABLE V-2: DIS File, Percentage of Students, by Type, with Disadvantages for Sample Case

STUDENT TYPE DISADVANTAGES	Negro Less than $\$ 3000$ (Negro)	Negro More than $\$ 3000$ (MexicanAmerican)	White Less than $\$ 3000$... (White)	White More than $\$ 3000$ (White)
Income less than $\$ 3000$	100\%.	0\%	100\%	$0 . \%$
elementary or less	41\%	50\%	50\%	20\%
Student has physical handicap	27\%	20\%	20\%	15\%
Student's family is disrupted	45\%	35\%	30\%	20\%
Fellow Students	60\%	50\%	40\%	20\%
Achievement Lag of Individual Student	60\%	50%	40\%	20\%

TABLEV-3: File LASTI- -Number of Students of Each Student

STUDFNT	TYPE	NUMBER
	1	1000
	2	1000
	3	1000
	4	1000

TABLE V-4: File INGLEV--Initial Grade Level Achievement Scores

TABILE V-5: File STATIN--Rates of Achievenent

STUDENT	ACHIEVIMENT	
	English	Mathematics
1	.30	.30
2	.35	.35
3	.45	.45
4	.50	.50

TABLF: Y-6: File PPINIT--Initial Achicvement Distribution of Students

STUDENT TYPE	Fail	Pass
1	90%	10%
2	83%	17%
4	50%	50%
		50%

TABLE V-7: File NOCORS--Number of courses by Grade

GRADE	Number of Courses
1	2
2	2
3	2
5	2
6	2
8	2
10	2

TABLE V-8: Compensatory Services Data (Title I Run)

Data	Counseling	Reading Centers	Study Trips	Health Services	Schonl- Home Liaison	Electrical Teacher Aides
Grade in which service offered	10-12	1-6	1-12	1-12	10-12	1-12
Service is new	yes	yes	yes	yes	.yes	yes
Service is free	yes	yes	yes	yes	yes	yes
Paraprofessional w/service	5	2 :	0	5	2	23
Space used for service	n/a	5 rooms	----	----	-.--	----
Service budget $(x \$ 1000)$	78	57	83	40	12	56
Disadvantages Service is designed tocompensate for*	2,5	5,6	1,2,5	1,3	2,4	0
Amount of time * spent by participant in service					*	
Hours Days Weeks	Not avail Not avail Not avail	ble			\because	

*CODE: $\quad 1=$ Family poverty
$2=$ Parents low level of education
$3=$ Physical Handicaps
4 = Broken family situation
5 = Whole class achievement lag
6 = Individual achievement lag
$0=$ none of these

TABLE V-9: The Sample Run Instructional Indices

TABLE•V-10: The Sample Run Service Indices (Title I Run)

	Service Counseling	Reading Centers	Study Trips	Health Services	SchoolHome Liaison	Clerical Teacher Aides
NEW	1	1	1	1	1	1
FREE	1	1	1	1	1	1
PARA	. 55	. 20	1.00	. 50	. 50	. 10
SPACE .-.	.. 1.00	. 50	1.00	1.00	1. 0.0	1.00
SBUDGT	. 60	. 33	.75	. 50	. 50	. 10
SHOURS	. 50	. 50	. 50	. 50	. 50	. 50
SDAYS	. 50	. 50	. 50	. 50	. 50	. 50
SWEEKS	. 50	. 50	. 50	. 50	. 50	. 50

TABLE V-11: District-Specific Markov Matrix of Transitional Achievement Probabilities

TABLE V-12: Baseline Output Using Generalized MARKOV Matrix

```
HEGROES-LESS THAN $3000
```


GRADE ACHIEUEMENT MATH TRUANTS DROPOUTS
2.9
3.9
5.2
6.2
8.2
10.2

1.6	1.58
2.5	2.46
3.9	3.81
5.6	4.92
7.3	7.13
9.4	9.24

| 12 | 0 |
| ---: | :--- | :--- |
| 12 | 0 |
| 11 | 0 |
| 12 | 0 |
| 8 | 0 |

EQUALITY OF EDUCATIONAL OPPORTUNITY

GRADF $=10.0$ ENGLISH $=.68$ MATH $=.67$
POTENTIAL EXPECTED
LIFETIME LIFETIME
NUMER EARNINGS EARHIHGS

GRADE 6 O 29671 21726

DROPOUTS

GRADE 19 O 64887 48844
DROPOUTS
GRADE $12 \quad 34 \quad 70652 \quad 54638$
DROPOUTS
$\begin{array}{llll}\text { VOCATIONAL } & 40082175\end{array}$

COMMERCIAL 491 61861 54212

ACADEUIC $\quad 73 \quad 94886 \quad 89484$

Tos.

TABLE V－13：Compensatory Education Outpul Using Generalized MARKOV Matrix （ $)$

NEGROES－LESS THAN \＄3000

シニニニニニニニニニニンニンニニニニンニニニ

GRADE
ACHIEVEMENT ENGLISH

TRUANTS
DROPOUTS
2.9
3.9
5.2
6.2
8.2
10.2
1.6
2.5
3.9
5.9
7.2
9.4

MA TH
1.58
2.45
3.81
4.91
7.12
9.23

12
12
11
12
8
0
0
0
0
0
0
B

EQUALITY OF EDUCATIONAL OPPORTUNITY

GRADE $=10.0$ ENGLISH $=.68$ MATH $=.67$

POTENTIAL EXPECTED
LIFETIME LIFETIAE
NUMEER
EARHINGS EARMIHGS

GRADE 6			
DROPOUTS	G	$2967!$	21726

GRADE 10
DROPOUIS
GRADE 12
DROPOUIS $\quad 34 \quad 70584 \quad 54585$
$\begin{array}{llll}\text { VOCAIIONAL } 460 & 70871 & 62109\end{array}$
COMMERCIAL $491 \quad 61795 \quad 54159$

ACADEMIC $73 \quad 94874 \quad 89471$

TOTAL	1000	68129	59924

TABLE y－14：Baseline Output Using Generalized MARKOV Matrix

$$
\begin{aligned}
& \text {-NEGROES-MORE THAN } \$ 3000 \\
& \text { ニニニニニニニニーニンニニニニニニニニニニーン }
\end{aligned}
$$

GRADE
ACHIEVENENT
TRUANTS
DROPOUTS ENGLISH MATH

2.9	1.9	1.90	11	0
3.9	2.9	2.87	11	0
5.2	4.4	4.31	10	0
6.2	5.6	5.48	10	0
8.2	7.9	7.78	6	0
10.2	10.1	9.97	0	0

EQUALITY OF EDUCATIONAL OPPORTUNITY

GRADE $=10.0$ ENGLISH $=.73$ NATH $=.73$

POTENTIAL EXPECTED
LIFETINE LIFETIME
NUMBER EARNINGS EARNINGS
GRADE G
DKOPOUTS

GRADE 10		
DOOPOUTS	0	$69964 \quad 52566$

GRADE 12 DROPOUTS	30	75645	58499
vOCATIONAL	302	76437	67031

COMMERCIAL 5165669258446

ACADEMIC $150 \quad 98225 \quad 92939$

TOTAL．	1000	74643

TABLE V-15: Compensatory Education Output Using Generalized MARKOV Matrix

$$
\begin{aligned}
& \text { NEGROES-MORE THAN } \$ 3090
\end{aligned}
$$

GRADE	ACHIEVEMENT		TRUANTS	DROPOUT
	ENGLISH	MATH		
2.9	\vdots	1.9	1.90	
3.9		2.9	2.86	11
5.2	3.4	4.31	11	0
6.2	5.6	5.47	10	0
8.2		10.9	7.78	10
10.2		9.96	6	0
			0	0
				0

EQUALITY OF EDUGATIONAL OPPORTUNITY
GRADE $=10.0$ ENGLISH $=.73$ MATH $=.72$

	POTENTIAL EXPECTED
NUMBER EAREIIAE LIFETINE	
LIFES EARNINGS	

GRADE 6	0	32733	$235 G S$

GRADE 10	0	69929
DROPOUTS		

GRADE 12	30	75611	58473

DROPOUTS
$\begin{array}{lll}\text { VOCATIONAL } & 362 \quad 76457 & 67004\end{array}$
COMHERGIAL $516 \quad 66666 \quad 5842.2$
$\begin{array}{llll}A C A D E M I C & 150 & 98218 & 92931\end{array}$

$\begin{array}{llll}\text { TOTAL } & 100 B & 74615 & 66187\end{array}$

TABLE V-16: Baseline Output Using Generalized MARKOV Matrix

$$
\begin{aligned}
& \text { WHITES -MORE THAN } \$ 3900
\end{aligned}
$$

GRADE	ACHIEVEMENT		TRUANTS	DROPOUTS
	ENGLISH	MATH		
2.9	3.2	3.18	7	0
3.9	4.6	4.61	6	0
5.2	6.6	6.59	3	0
6.2	3.0	7.93	2	0
8.2	19.8	10.69	0	0
10.2	13.1	13.26	0	0

EQUALITY OF EQUCATIONAL OPPORTUNITY
GRADE $=10.0$ ENGLISH $=1.00 \quad$ MATH $=1.00$

POTENTIAL EXPECTED
LIFETINE LIFETIME
NUMBER EARHIHGS EARNINGS
GRADE 6
DROPOUTS $\quad 07004 \quad 56560$

| GRADE 10 | e | $114769 \quad 113933$ |
| :--- | :--- | :--- | :--- |

dropouts
$\begin{array}{llll}\text { GRADE } 12 & 12121323 & 120516\end{array}$ DROPOUTS

VOCATIONAL. . $477 . . J 25414 . \quad$ L24959

COMMERCIAL $460 \quad 109354108955$

ACADEMIC $\quad 335 \quad 134657 \quad 134477$

TOTAL $1000 \quad 119238 \quad 118903$

TABLEV-17: Compensatory Education Output Using Generalized MARKOV Matrix
()

$$
\begin{aligned}
& \text { WHITES -MORE THAN \$3000 }
\end{aligned}
$$

GRADE	ACHIEVEMENT		TRUANTS	DROPOUTS
	ENGLISH	MATH		
2.9				
3.9	3.2	3.18	7	0
5.2	4.6	4.61	0	0
6.2	8.6	6.50	7.94	3
8.2	10.8	10.70	2	0
10.2	13.4	13.27	0	0
			0	0
				0

EQUALITY OF EDUCATIONAL OPPORTUNITY
$G R A D E=10.0$ ENGLISH $=1.00 \quad$ MATH $=1.00$

POTEMTIAL EXPECTED
lifetime l.ifetime
NUMBER EARNINGS EARMIHGS
GRADE 6
DROPOUTS $\quad 0 \quad 57004 \quad 56560$

GRADE 10 B 114355 114624 DROPOUTS
$\begin{array}{llll}\text { GRADE } 12 & 12 & 121407 & 120600\end{array}$ DROPOUTS
vÖ́AIIOHAL • 177125508 - 125053

COMNERCIAL $460 \quad 109435 \quad 109036$

ACADEMIC $\quad 335 \quad 134669 \quad 134490$

$\begin{array}{llll}\text { TOTAL } 1000 & 119281 & 118946\end{array}$

TABLE V-18: Baseline Output Using District-Specific MARKOV Matrix
(1)

TABLE V-19: Compensatory Education Output Using District-Specific MARKOV Matrix

$$
\begin{aligned}
& \text { NEGROES-LESS THAN } \$ 3090
\end{aligned}
$$

GRADE
ACHI EVEMENT
TRUANTS
DROPOUTS ENGLISH MATH

2.9	1.1	1.08	14	0
3.9	1.5	1.48	16	0
5.2	3.2	3.19	13	0
6.2	4.5	4.46	13	0
8.2	6.3	6.28	11	0
10.2	8.5	8.51	51	0

EQUALITY OF EDUCATIONAL OPPORTUNITY

GRADE $=10.0$ ENGLISH $=-.11 \quad$ MATH $=-.11$
POTENTIAL EXPECTED
NUNBER EARETHE LIFETINE
EARNINGS

GRADE 6	0	25660	18788
DROPOUTS			

GRADE 1D	0	59134
DROPOUTS	45551	

GRADE 12 DROPOUTS VOCATIOHAL	38	65044	50301
V21	64587	56502	

COMMERCIAL $470 \quad 56316 \quad 49352$

ACADEMIC	68	93954	85519

TABLE V-20: Baseline Output Using District-Specific MARKOV Matrix

TABLE V－21：Compensatory Education Output Using District－Specific MARIKOV Matrix

> NEGROES-MORE THAN $\$ 3900$
> こここニニニニニニニニニニニニニこニニニニニ
GRADE ACHIEVEMENT TRUANTS MATH DROPOUTS

2.9	1.4	1.37	13	0
3.9	1.8	1.84	14	0
5.2	3.6	3.60	12	0
6.2	4.9	4.87	12	0
8.2	6.7	6.70	9	0
10.2	8.9	8.93	12	0

EQUALITY OF EDUCATIONAL OPPORTUNITY

GRADE $=10.0$ ENGLISH $=-.03$ ．MATH $=-.03$
POIENTIAL EXPECTED
LIFETIME LIFETINE
NUMBER EARNINGS EARNINGS

GRADE 6	0	20171	
DROPOUTS			

GRADE 10 DROPOUTS	0	62105	46758
GRADE 12 DROPOUTS	36	67916	52522
VOCATIONAL	343	67774	59395
COMMERCIAL	504	59095	51788

ACADEMIC $\quad 115 \quad 96317 \quad 98964$

TABLE V-22: Baseline Output Using District-Specific MARKOV Matrix

$$
\begin{aligned}
& \text { WHITES --MORE THAN } \$ 3000 \text {. }
\end{aligned}
$$

GRADE	$\begin{aligned} & \text { ACHI } \\ & \text { ENGLIS } \end{aligned}$	IENT Math	IRUANTS	DROPOUTS
2	2.5	2.51	9	0
3	3.3	3.29	10	0
5	5.3	5.27	7	0
6	6.6	6.58	7	0
8	8.4	8.44	4	0
10	10.1	10.70	0	0

EQUALITY OF EDUCATIONAL OPPORTUNITY

GRADE =	2	ENGLISH $=$.00	MATH $=$.00
GRADE =	3	ENGLISH $=$	3.22	MATH $=$	3.22
GRADE =	5	ENGEISH $=$.91	MATH $=$. 91
GRADE =	6	ENGLISH $=$. 62	MATH $=$. 62
GRADE =	8	ENGLISH $=$. 42	MATH $=$. 42
GRADE =	10	ENGLISH $=$. 31	MATH $=$.31

POTENTIAL EXPECTED
LIFETIME LIFETINE
NUMBER EARNINGS EARNINGS

GRADE 6 DROPOUTS	0	47466	47096
GRADE 10 DROPOUTS	0	91987	91321
SRADE I2 DROFOUTS	26	98918	98260
VOCATIONAL	193	100384	100020

| COMMERCIAL | $480 \quad 87529 \quad 87209$ |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}A C A D E M I C & 299 & 129325 & 129148\end{array}$
() JOTAL 1000102757102460

TABLE Y-23: Compensatory Education Output Using District-Specific MARKOV Matrix

GRADE	ACHIEVEMENT		TRUANTS	DROPOUTS
. $\cdot .$.	ENGLISH	MATH		
2.9	2.5	2.52	9	0
3.9	3.3	3.30	10	\square
5.2	5.3	5.26	7	0
6.2	6.6	6.57	7	0
8.2	8.4	8. 45	4	0
10.2	10.7	10.70	0	0

EQUALITY OF EDUCATIONAL OPPORTUHITY

GRADE $=10.0$ ENGLISH $=.31$ MATH $=.31$

POTENTIAL EXPECTED
LIFETIME LIFETIME
NUMBER EARNINGS EARNINGS
GRADE 6
DROPOUTS

GRADE 19 DROPOUTS	0	91987	91321
GRADE 12 DROPOUTS	26	98918	98260

VOCAIIONAL $193 \quad 100384 \quad 100028$
$\begin{array}{llll}\text { COMMERCIAL } & 480 & 87529 & 87269\end{array}$
$\begin{array}{llll}\text { ACADEMIC } & 299 & 129325 & 129140\end{array}$

TOTAL : $1800 \quad 102757 \quad 102460$

TABLE V-24: Compensatory and Non-Compensatory Schools Compared with Respect to Stanford Reading Test Scores and Changes

	AVERAGES		CHANGES	
	Grade 1.	Comp.	Non-Comp.	Comp.
	1.58	1.96	.02	.00
	2.14	2.95	.03	.00
	2.73	3.91	-.01	-.15

ApPRENDIXA

HOW TO USE THE MODEI

The OECE Model will have several types of users: the data gatherer, who collects the information necessary to describe the school district being studied; the administrator, who provides input for the clata gatherer, specifies the alternative compensatory programs under consideration, and ciecides which combination of compensatory programs will be implemented; the data interpreter and executor of the computer program (hereafter refered to as the model operator!. The flow chart in Figure A-l shows the sequrnce of operations that must be followed to operate the model suceessfully.

This Appendix will concentrate on the tasks of the model operator. Appencis li describes the forms included in the OFCf: Model and the directions for applyine then. These directions define the task of the data gatimerer. A portion of the athministrator's task is also described, since he must fill out the section of the ferm dealing with proposed compeasather progroms. lionhatinc ho outat of the model, the other task of the aministmotor, is desmbed in Chapter Ill. $\%$.

The model operator should have some mathematical ability and should know computer programming. He should have a working knowledge of the model, and know the organization and techniques of the computer program. He should also be familiar with educational processes, and he will be called upon to exercise some judgment in translating the from the usor forms into computer input form when deta forms from the school district are incomplete. Tinas, his judgment, accuracy, and clarity significantly affect the quality of the cost-effectiveness evaluation.

The tasks which the model operator must perform are listed in boxes C through H of the flow chart in Figure A-1. Fach of these will be described in the followirg sections.

Enter the proposed program data into the computer files.
 Acministrator

TASKC: TRANSLATION OF THE RAW DATA INTO COMEUTFI? INiOTMORN

Complete data for a echool district using the model shoulel be containcel in a user form (Appendix B) whicin has becon properly filled out. It is assumed that the values of the program constants (weighting factors, Markov matrices, regressive coefficients relating dropouts and truancies with achievenent levels, etc.i are set from prior information. The degree to which these constants will change is not known from school district to school district. They might change due to regional differences. For example, state laws controlling minimum dropout ages differ. This affects the constants which relate dropoul rates to achievemont as a function of grade. Changes in parameters of this type are discussed in Appendix C.

The various entrics in the user form must be related to the data files of the program. For example, information about a service being new must be stored in the file called NJW. Table A-JI shows the connections between the user formentrics and the program files. Each file has a related question which supplics data for it. From the model operator's peint of view, files.are divided into thece distinct types:

1) files are reçuiring only a mansfer of data, or á translation of a Yes or No answer iato 1 or 0 ;
2) files requiring that the data be scaled between 0 and 1 ;
3) : files requiring other çomputation.

The format of each filcs is disfussed in appendix D. . Type f files recd quantitics tiansferred from the user form to the files according: to the specifice formats, Yith no intervening calculations. They are rather straightforward and require no further discussion.

Type 2 files do require calculations. "These desritibe the strengths of the components of the compensatory education programs either programs presently in cffect, or proposed programs. Each of these variables must be scaled to a value between 0 and 1. Each

TABI.EA-II
IINKAGF BTTWEFN COMPUTER FIIFS AND IHF QUESTJONNAIRF

File Type	File Name	Meaning	$\frac{\text { Matrix }}{\text { Dimensions }}$	$\begin{aligned} & \text { Questionnaire } \\ & \text { Kcference } \end{aligned}$
1	JASTI	Number of students in grade previous to INYEAR:	student type	$\begin{aligned} & 1 \mathrm{~d}, 5 h, 5 j, 5 j, \\ & 5 \mathrm{k}, 3 \mathrm{~g}, 3 \mathrm{~h} \end{aligned}$
1	SRVICS	Number of services	student type, grade	5a, 6a
1	RFL	Relevance of services to disaclvantage factors	type, scrvice, disadvantige	50,6k
1	NEW	Service new or not?	service, grade, type	$5 c, 6 c$
1	FKEF	Scrvice free or not? (Always frec for Tit)eI programs)	$\begin{aligned} & \text { service, grade, } \\ & \text { type } \end{aligned}$	--
2	PARA	Number of para-professionals/student	$\begin{aligned} & \text { service, grade, } \\ & \text { type } \end{aligned}$	$\begin{aligned} & 5 d, 5 h, 5 i, 5 j, 5 k \\ & (1 d) \end{aligned}$
2	SPACE	Space per stuklent	$\begin{aligned} & \text { service, grade, } \\ & \text { type } \end{aligned}$	$\begin{aligned} & 5 c, 6 e, 5 i, 5 i, 5 j \\ & 5 k \end{aligned}$
2	SBUDG7	Dollars yer student	$\begin{aligned} & \text { service, grade, } \\ & \text { 1)pe } \end{aligned}$	$\begin{aligned} & 5 f, 6 f, 5 h, 5 i, 5 j, \\ & 5 k \end{aligned}$
7.	Sllours	Hours per day using service	service, grade, t) PC	51, 6h
2	SDAYS	Days per week using scrvice	scrvice, grade, type	5nx, 6i
2	SWEFKKS	Weeks per year using service	$\begin{aligned} & \text { service, g:ade, } \\ & \text { type, } \end{aligned}$	5m, 6j
3	DIS	Students' elisadvantage faciors	fest, gracle	-4a, 4b, 4r, 4d, 1,
2	RECEN	Heceac; of curriculum material	test, grade	7a.8c
2	TCHEXP	Average teacher expericnce	test, grade	7b, 8d
2	TCHMS	Teacher/pupil ratio	test, grade	7c, 8c
2	TEXTS	Text/pupil ratio	test, grade	7d, 8!

TABLEA A-Il - Continuect

$\frac{\text { File }}{\text { Type }}$	File Name	Meaning	Matrix Dimensions	Questionnaire Reference
2	1)ESKS	Desk/pupil ratio	test, grade	$7 \mathrm{c}, 8 \mathrm{~g}$
2	TCHBUD	Instructional budget	test, grade	7f, 8h
2	C'THRS	Hours/Jay instruction	test, grade	7g, 8 i
2	TCHDYS	Days/week instruction	test, grade	7h, 8j
2	TCHWKS	Wecks/ycar instruction	test, grade	7i, 8k
3	INGLEV	Grade level achicvements in grade before JNYEAR	test, grade, type	$\begin{aligned} & 2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}, 2 \mathrm{~d}, \\ & 2 \mathrm{e}, 2 \mathrm{f} \end{aligned}$
3	PlPNIT	Percentages of students over and mider the threshold score in the grade before INYEAR	test, grade, type	$2 \mathrm{~g}, 2 \mathrm{~h}, 2 \mathrm{i}, 2 \mathrm{j}$
3	STATIN	The achievement gains per ycar	test, lype	2k
1	INIT	Number of grades tested, number of student types, initial grade of the Title program, the test morms for wach gracle lesterl	--	1 f

HNYEAR denotes the first grade in which the Title I program is in effect
\neq Test the test categorics of the achiesement tests administered. Two categories are presently allowed: scientific and nom-scientific.

Each variable is assumed to have a minimum value helow which
the redation of the fitle 1 proeram compontal hes no lessenity
effect on student performance, and a maximum value, above which an increa:c of the Title I program component has no further beneficial effect on studont performance. The value of the variable is computed by:

$$
\text { Variable }=\frac{\text { Value }-(\text { Min Value })}{(\text { MaxVatuc })-(\text { Min Vatue })}
$$

For example, FARA contains the numbers of para-professionals associaled with the various Titce I service components. Suppose that the service being consideredis a heath service, and the.t the para-professionals are nurses. Suppose further that the proposed Title I progran has provision for theec nurses. The minimum number of nurses is 0 . Let us choose the maximum number of nurses to be twelve. Beyonrl thas value, the school systom is consjecred to be overstaffod with murses, and adkling more has no bencficial effect. The variablescaling is calculated as:

$$
\text { Variable }=\frac{3}{12-0}=.25
$$

This proposed Title I program, with a linear measure of program magnitude, has gone one-fourth of the way toward satisfying the school system's requirement for nurses. Since theselection of the minimum and maximum values of the varjables is left to the model eperator. His familiarity with educational processes is important.

A linear measure has been chosen here, but the sophisticated user could employ mon-linea moasirue. Foicxample, if he decided that threc murse 3 would be so overworked and inefficient that they would be only slightly better than none at all, he might decine to enter the value . 1 into PARA. However, if no 'retter iniomation is available, a linea. measure sems to be a reasonable choice.

Note that all Type 2 variables describe the streng the of the Title I program componcats. Type $\boldsymbol{3}$ variables describe the characterjstics of the student population in the grade immediatuly before that in which the Titte I program takes effect. All of the infonmation for filling the Type 3 data files is contained in the Studenl Record Sample Questiomaire (SRSQ) of the User Furm in Appendix B. There are four Type 3 files. They are:

1) DIS - The percentages of students having ei.ch of the six factors of disadvantage described in Chapter III. 4. This computation f : tratehtorware and bas been deseribed in the SRSC.
2) INGINV - The average grade level eculvalerit achievoment in each test category of each student type in the grade immediately preceding that in which the Title 1 program is first appliod. These computations are also straightforwatd sampling and averaging pro.cedures and are described in the SRSQ.
3) STATIN - The grade tevel achicvement rates in each achicvement tesi calegory in the grade procedin: Jithe 1 application. These
 lent achievements per year is the required quantity. this is oblainced by subtracting two consecutive achievement test scores for each student sampled, and dividing by the number of years between the teste. For example, if student A had test scores in Math of 3.1 and 5.6 in years 3. ? and 5.8 respoctirelf (Title d being applict ingracle (6), his achievement rate is:

$$
\text { Rate }=\frac{5 \cdot 6-\frac{3.2}{5 \cdot 8 \cdot .}-\frac{2.5}{3.2}=\frac{5}{2 \cdot 6}=.96}{}
$$

These iates can be averaged over all students of the student type being considered.
4) PPINIT - The percentages of students of each stucient type whose test scores are above and \vdots iow the achicvement threshold
(Sec Chapter III. 5) for the combinations of achievenment test cacegories. For evample, if the threshhold is the national mo:m, it would be the percentage of students who were below in both Finglisht and Math catcguries, the percentage who were below in Einglish but above in Math, the percentage who vere above in Engljsh but below in ivinth, and the jerecntage who acored above the norm in botin subjects (in the order shown). This procesy is again a simple catcgorizing of members of the sample in the $S R S Q$; i. e., counting the members in each catcery, and dividing by the total number.

After these computations are accomplished, the variables should be in the prope. - forms to be input to the data files. There will be several groups of juformation, one group for the base line case (without the proposed lithe I Progratas) and one group for cach of the proposed compensatory education programs. Some files will not change from basc line to non-base line rums; c.g., DIS - the perceniages with each disaclvantage factor.

TASK D: ENTER THE BASFISNEDATAINTOTEECON1FUTEREILES
To accomplich the heso lime rum, all of the file: jn Table A. It nust be filled with base line informetion, the formets and cract com-
 cach file to be filled into the time sharing computer memorv, fill or change the file, and store it again into permanent storage. The scquence of time sharing commands which accomplish this is described below. Statements printed by the computer axe unclerlincel, while those typer by the opecator are rnclosed in quotation marks.
"OI, 1"
OI, FILHKNAMF - "DARA" (or the appsopriate file)
READY
(At this point, the data can be entered following the formats deseribed in
Appendix D, e.g.)

$" 1000$	1	1	0.25	0.30	$0.12 "$
$" 2010$	1	2	0.30	0.85	

(etc.)
"SAVE":
READY
The computer is nowready to accept the command "Olit" to initiate the sequence again for the rexit file. After all the data files are fitled in this mamer, the model is prepared for a base line run.

Base line runs are necded only once for a partjcular school system if the only changes for subsequent runs are in the files containing the strengths of the various compensatory progran components. If any change is made in the program constants or in the student boiy characteristics, another base line rum is necessary.

A base line runfills the files OII:\%, OLDC, aid OLDSEK, which are basc line values of the impedence, instruction, and service respectively. If it is desired to save the results of a base line am for later use, it is sufficient to saveonly thesc threc files. Rearing them beck into the files is cquivalent to making the same baseline run.

TASK E: MAKE A BASELINF, RLiN

After the base line values of the progrenn componenta here beon placed in the files, making a basc line r in simpl; a matter of ruming the program. The file containing the initial section of the program is MAIN. If this file is called into memory and run, it will call all subsequent programs, and stop after the final output. The only operator intervention resuived is to tell the prog.em if the run is base line or not. The computer will print
IS THIS A BASE LINFRUN? 1 IF YES: 0 IF NO
?"!"
The answer is one in this case, a base line run. The exact sequence of instructions which start the program is as follows:
"OLD"
OID FILE NAME -- "MAIN" *
READY
"RUN"

TASK E: ENTFR THF: PROPOSED FROGRAM IATA INTO THE COMPUTER • FILES
I'his task is accomplished in the same maner as Task It, the difference bejng that the data input is non-basc line data. Sec the description of Task D for the details.

TASK C: MAKJ A COMPUTER RUN FOR TFE FROPOSED FMOGRANI
This task is accomplished in the same way as Tasli E ,
except that the operator types 0 instead of 1 when computer asks if the run is base line or not. See the description of Task E.

TASK II: RFPLAT RUNS FQR ALI PROPOSFI PROGRAMS

Each proposed Tinte I progran imples changes in some of the variables describing the strengthe of the program components. Tasks 7 and G must be repeated for each of the Title 1 programs being consiclered.

After the program has becin run for cach of the fitle I programs, and for the base line casc, the administrator can compare the outputs to weigh changes in operation and funding against the results which the model estimetes and projects in the future.

TO THE SUPFRINTENDENT

After you hare completed your share of thesc forms, and the Office of Educatien has analyzed them with the help of compraters, you will be able to evaluatc the effectiveress of any compensatory or instructional improvement programs you contemplate adopting under Title I of the Filementary and Secondary Act of 1965 (as amended in 1967), with much greater accuracy and detail than was previously possible.

We have made every effor to make the questionnare as painless and rapid as possible for your office and the inflividual school offices to fill out, while providing the degree of detail necessary for aecurate analysis by computer. For your convenience, we have organized stop-by-step, instructions (beginining on the nest page) for finding and filling in answera to tho questions. Picase, follow the instructions exaclly and in order!

Some of the information can 'e filled out inmediately on the final sheet; that are eventuaty to be rethemed by us (thess are all on blue paper. Y an can complete all addidiontinformation re-
 copies of some partially-completed blue shects) to selected schools, compiling the results, and copying the final figures on the blue shects.

The Superintendent's Office should be able to complete the blue master questiomaire shects--both questions which are immediately answerable of data from selecti. i chools.- in a total of one man-d:y or less, compilation if adding and photocopying machines are avaitable, Each stlectod school can complete the work on the white and photocopies sub-questiomnire shects in about the same time.

SUMMARY AND INSTRUCTIONS FOR USNK
 THE FDUCATIONAL EFFECTIVENESS QUESTIONNAIRE

The questiomaire requires information from five differeat sources in the schosl system:

BLUE
QUESTION; PART

1. The superintenciont's central school oftice should have information in proper form for questions.
2. The superiniendent's judgment, and that of his advisors, provide informa.tion for curstions.
3. Wach school in ho di=trici should have information in proper form
for questions.
4. A brief survey of tenchers in representative schools will provicle information for questions.
5. A small statistical samplo of pupil records in representative schools will provide information for questions. . . .

6: a, b, c, d; c, f, g, h, i, j, k 8: $a, b, c, d, c, f, g, h, i, j, k=G r c i p 2$.

5: g
7: a, b. $2, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}=$ Gronl, 3.

5: $a, b, c, d, c, f, h, i, j, i, l, o \quad=\operatorname{Group}, 4$.
 fice immediately on the blue mastor sheets. Fon the orber ture brups it is hucusat? to choose representative schools and send white sheets and photocopies of partiallycompleted blue sheets to them. They can fill out group (3) immediately. Giroup (1) requires each selected schonl to conducta small survey of teacher judgment, and Group (5) requires a small sampling of pupil records. Answers from the various representative schools are then averaged and compiled, and the results are entered on the macter: blue shects. This completer the questiomate, which is then returned to us.

The blue shects, and only ther, contain all the information in final form.

Instrocinos.

1. The Superintendent's Office should fill directly onto the blue sheets in answer:, to Group (1) questions, plus any cther questions it can answer from its files.
2. The superintendent and his advisors on compensalory and instructional improvement programs should meet and fill in answers to Group (2) trgether. Each proposed
program nced not be listed on a separate cony of Question bor 8. Ten copies of each are providici. If more progiams are to be cualuated, simply photiocopy he sheets for as many as are desired. Each set of answers slould be numbered for future reference where indicated.
3. The superintomdent's oflice'should fill in tace "Condensed Quentions 5 and G" zheets. This inyolves copying thesorvices listod ingucetion 5 and all the versions of question 6, taking care to list, just once, all of the services used in the various programs, filling in no other blanks.
4. Representative schools should be chosen to answer the remaining question according to the instuctions entjlled "Sclecting leprescatative Schools."
5. Partially-completed guestions 1, 5, and 6, and "Condensed Questions 5 and 6" should be photocopied with enough duplicates for all schools (see below).
6. Eetch school should be sent the following items in the following numbers:
```
    inlrocuctory letter
    photocopied partially-completed cutastion 1
    photoconied partially-complefed question 5
    photocopicd partially-completed cuostion 6
    photocopied "Condensed Qucstions 5 and 6"
    blank question 2 (white)
    blank question 3 (white)
    blank question 4 (w}ite)
    blank question }7\mathrm{ (whitc)
    "Conclucting'snel Comomilma' the 'locechos Suryey"
    "Conducting and Compiling the Fupil leccord Sample"
    Pupil Lecord Sanmple Questionmajre"
```

Note that no bluce shects should be sent out to selmols; they are master copics to be kepl by the superintendent's office.
 tion should be compiled, using the instructions entitled "Compiling the Sehool vuestions. Then these final figures should be entered on the blue master questionnaire.
8. The completed blue questionnaire should then be sent to us for analysis.

NOTE: You may find that some sheets do not have enough vertical space a all your information. Simply add as many sheels as mecossaiy, and comintie with lice same placement of columns.
$\% 12$ for junior high and sonior high, 24 for clementary

The questionnaire kit includes materials for sampling nine schools in your district throe clementary, thece jumior high, and three senior hich). If you have all thee lovels of schools, you shonld sample ne loss than nine. Sumplige less than throe sehools per level may poduce lese accurate information than is desirable for the analysis. You may sample more if you like, simply by photocopying additional shects.

The following steps give a "sclcction procedure" for choosing schools that accurately rencet you whole school district. If the district is too small to apply these techniques directly, choose schools from a wide range of incomes and locations, but with threce elementary-juniorsenior "clusters." The schools in each cluster should be in the same geographes! area.

1. List all the senior high schools in the district. Then eliminate schools that are considerably above or below average si\%e.
2. From these, choose the schools with most compensatory services already provided or, if few are provided, where compensatory services are most needed. A good number to choose is fiftecn in a large district.
3. Arrange these schools roughy in order according to the part of town and parenta' income braclict. (Use the table on the next page, if it is hefrul. $)$ Then (leose the top fomb, four from the midelle, and the botom four.
4. Now repeat this procedure for elementary and junior high schools.
5. Take the four top schoole for wach luve and scouct omo from each level to mate a "cluster" of thece reasonably cloee logetiss.
6. Do the same for the bottom four. This "cluster" should be as far away geographically as possible from the "richer" eluster.
7. Finally, do the same for the "middle" group, again trying to locate this "clleter" as far away from the other two as possible.

The nine schools chosen by this method should give a good indication of the general condition of your schooi district.

Elementary

niddle"

Junior High

Scnior High

Letter of Introduction to be Sent with Questionnaires to Each School Principal

Dear Sir:
Your school has been chosen by the Superintendent's Office to participate in an evaluation of various programs which are being considered by the Office of Education for adoption under Tille I of the Elementary and Secondary Education Act of 1965 (as amended in 1967).

You can contribute to this evaluation by supplying information about your school for a questionnaire which the Superintendent is required to submit. The Office of Education hats atiempled to make your part of the questionnaire as short and simple as possible. However, a certain degree of detail is necessary to insure accurate computer analysis.

Some of the information may be filled in immediately. The rest mas be obtainer by a surwey of a fer teachers thyour school and from a smplirg of your pupil records ad averacing a fow important details. for your convenicnce, step-by-step instructions have becnincluded begiming, on the nexl page.

If you have an adchar machine at your disposal, you shenld be able in complete thesc ruestions in one man-das. licese follow instructions proxsely and in the order whet hoy apoar!

Sincerely yours,

With the materials you have received from the Superintendent's Office you should find the following:

4 copics of "Condensed Questions 5 and 6"
l copy of photscopied, partially-completed "Question 5"
1 copy of photocopied, partially-completed "Question 6"
These are to be used to survey four teachers and various special service aides in your schnol for their opinions of existing and contemplated new pregrams.

Choose one mathematics teacher, one science teacher, one English teacher, and one history teacier. They should be familiar with the school's facilities and have considerable teaching experience. Department heads are ideal if they have beon at the school several years; hut if a department head is new, it is better to choose a teacher who has been around longe".

Circulate "Condensed Questions 5 and 6 " among all paraprofessionals who are actively involved in the extra-instructional serviecs listed on the question shect. This includes comenclore, recerational aides, dieticiens, nurses, special activities leaders, librarians, teachers' clerical airles, assistants for plysice'ly handicapped stedents, school-home liasons, specia' facilities carctalers and operators, ele. Have each person fill out the rows of blanks on the sheet which applies to the service he is associated with.

This completest the teacher survey.

CONDENSEI QUFSJIONS 5 AND 6

a. List compensatory selvices currently offered (comseling, free hunches, anythins not related to instruction or to
b. Eifter numbers of grades in which service is offered. contemplated Iitle I Programs.

c. Is the service now?
d. Enter the numbe: of para-professionals associated witiz service

c. Enter emount of space used for service (sq.ft., no. of classrooms, etc.)

Bevak doven fotal namber
f. Friter iolal. number of studonts participaling in service
into numbers of race and family income, as Eollows g. Nolle-white under
$\$ 3,000$

Amount of time typical parlicipant
spends on service.
h. Non-While, i. White or over $\$ 3,000$

n. Enter disadvantage(s) tinat eacin service is specifically ciesignod to help compensate for, by this code: (0) - none of these; (1) = family poverty; (2) = parents' low level of education; (3) = physical handicaps; (4) = broken family situation; $(5)=$ whole - class ach. lag; $(6)=$ individual achicvament lag.

CONDUCTING AND COMPILING THE PUPIL RECORD SAMPLE

With the materials you received from the Superinendent's ffice should be included with the fallowing:

Yors will file tincse in with information from your files about your school's student -hody.

Some of the informetion can be filled oin immediately from your records, as follows:

1. Fill in guestion (ld) for each grade in your school.
2. Fill in question (lf) fo: each grade in your school from records of standardizoct tests for as man; as 6 test sets.
3. Also from these records, fill in (2a), (2b), (2c), and (2f), using separate copics of Question 2 for each test set, one of which must be for the first-grade entrance test set.
4. Fill in question (4e) by looking up achicvements for eech rlass section to fird which are achicving $3 / 4$ or less of theil grade $l e v e l$ and adding up the total number of students in all of these achievement..lag classes.
 - your files. It is assumed that the student records contain at lenst the following inforhation on erch sindent:
```
race
family's income
achievement test scores and perce-tiles
    for each test set indicated in question (li)
approximate parents' level of education
indication of physical handicaps
parents' marital status
indication of truancy or dropout status
```

 erages, or make a note and explain on a separete shect.
5. To choose the student sainple, first take the number of students in your school and divide exactly by 50 . Call the result " T :" Round I off to the next higher whole

* 12 if your school is junior high or senior high, 24 if elementary
number and call this result the." Now go throudi the student records for the whole school and take out every $U^{\text {th }}$ record, going in alphabetical order. This group of records is the sample.

6. Next separate the records into one pile for cach grade in your school. Then separate each pile into two piles, one for white and the ather for non-white. Finally, separate each of these pilcs into two piles, one for family income under $\$ 3,000$ a year, the other for $\$ 3,000$ or over. You should now have four piles for each grade, as follows:

7. Fill out a PRSQ for each of these piles, making sure to compute the sum and averages at the botiom of some of the chums.
8. Grom, torinor all fone PRSiQ's for ench grade scparately. Add up fine numbers of sample students (N 's) for all types together in cach separate grade. Enter the results in (lc) for each grade.
9. Now re-group all PRSQ's together for cach of the four race-income types separ-
 scparate type. Fhtor these in (2 l) and (2c) for each race-income type.
10. Kecp the HRSR 's grouped by race-income type. Add up the numbers of mAvI , $m B v A, m A v A$, and $m B v B$ students, for all grades together in each separate type. Enter these sums in (Lg), (2 h), (2 i), and (2 j) for each race-income type.
11. Keep the same grouping. Add the numbers of dropouts, for all grades together in each separate type. Enter these sums in one of (3a), (3b), or (3c), depending on the level of your school, for cach race-income type.
12. Repcat for truants, and enter the sums in one of (3d), (3c), or (3f), depending on the level of your school, for each race-income type.
13. Add and average the " I " entries, for all grades together in each separate type. Enter these sums in (3g) by race-income type.
14. Enter the number of students in each socio-economic group in (3b).
15. Likewisc, add the numbers of parents with eiementary school education or less, for all grades together in each separate type. Enter this sum in (4b).

scparate typ: and enter the :inns ats follows:

$$
\begin{align*}
& \text { scnaratcd. } \tag{Ad}
\end{align*}
$$

This: completes the pupil record sample. When this and the teacher survey are both conyplete, pleasc return to the Superintendeat's Office all shects of Questions 1,2 (all of them), 3, 4, 5, 6 and plus any expematory notes jou have madis.

Thanl: you for your patience.

Cuciaino cocles Tost set at catrance to \＆ーいどに1

．Sum
$S=\overline{S / N=}$ $\mathbf{S}=$

Sum $=\frac{}{S / N=}$ S＝ $=\overline{S / N=}$ S＝

Sum $\overline{S / N=}$

S＝ \qquad S＝ $\overline{S / N=}$
\qquad mBvA \qquad $m A v B$ \qquad mBvA $\mathrm{mAvA} \quad \mathrm{mBvB} \quad \cdot \mathrm{mAvA} \quad \mathrm{mBvB}$ mAvA mBvB

Test sot given here in =rode monera

Test set given here in grade \qquad month MATH ENGLISH

Test set given here in grade \qquad rionth \qquad MATH ENGLISH

Enter "1" if dropped out

Enter the nut be: of Lines the sterlent was truant last year

Enter est. Enter " 1 " Enter " 1 " Enter " 1 " Enter " 1 " if fa 'ly : if parents' if phys- if parents any test was imurne have elcm. icallyhan- divoreed $3 / 4$ or less ed, or less dicapped. or separ- of grade level

$\because \cdots$					
		- ...			
		\ldots			
	.				
-	\ldots				
				\square	
				-	
	$1 \cdot \ldots$				- \quad -

Sum

Sun
Sum
Sum
Sum
$\cdots \cdots$
\because

COMPILING THE SCHOOI QUESTIONS

When you have a set of seven completed white questions from each of the selected schools, it is a simple natter to average the results and enter them on the blue master shects.

First, go through each school's responses and check to meke sure that all questions that should have been answered are filled in, or noted with an explanation. Those questions are those in groups 3, 4, and 5. Anywhere an answer has been left out, make a note on a separate sheet, so that you can contact the school if necessary. If onc or two schools omit a particular item that is filled in by all the others, the final statistics will still be valid; but if more than this omit a question, they should be culled and some estimate should be made of the information.

Next, gather together all the schools' replies to each question separately, so that you can tabulate each question as a unit.

Add up all the responses to cach blank and then take the average, making sure to divide by just the number of schools answering the question. Then enter the averages on the blue master shcets. A convenient way to do this is to cnter the undivider sums and their divisors on the spare questiomarire provided. Then, as each division is perfo:med, the fital answer can be entered on the blue sheet and that box crossed off the spare.

This complete the Educational Fffectivencss Questionnaire. Simply acid us the master blue shects completely filled in. Our analysts and computer will begin work on the questionaires as som as we receive them, and we will send you results as soon as possiber within threr weeks.

Thank you for your patience.
a. List each grade in the school district.
b. For each grade, make a check 6 if there aro any compensatory programs in effect for that grade, and an " x " if not.
c. Make checks in the same set of boxes checked in b , and then add checks in boxes of years just preceding those checked in b. Put x 's in the remaining boxes.
d. Enter the total number of students in each grade in the school district.
e. Enter the number of students in the student sample, for each grade
f. For first grade plus each grade checked in c, enter "x's" for grades in which no standardized verbal and/or mathematical tests were administered, and enter the number of the month in which such tests were administered.

Place a check in boxes beneath boxes in which checks appear. Now place a check in any box immediately to the left of a checked box. Now place X's in remaining empty boses.

()

QUESTION 2

NOTE: Please fill out one of these forms for cach test set indicated in question 1 , partf, starting with first grade, going on to the nexit test set, etc.
a. Name of type of test: \qquad
b, Grade: \qquad \because Month: \qquad
c. If test gives only one score, combining mathematics and
[] English use boxes for ques tion (d.) and check here.

Non-white	Non-white	White	White
under	$\$ 3,000$ or	under	$\$ 3,000$ or
$\$ 3,000$	over	$\$ 3,000$	over

d. Enter average scores on mathematics section, for each income-race type. If possible, use grade level equivalent scores.
e. Enter scores for verbal scction. If two sections scored separately.

f. If grade level equivalent scores were not used, check here and please include with the returned questionnaire the conversion method for finding grade level
[] equivalents.
g. Enter number or percentage whoscored thove the 17th percentile on the ..anthematical and below it on the Englishisections.
h. Enter number or percentage who scored above the 17th percentile on the h. Englishand below it on the mathematical sections.
i. Enter number or percentage who scored above the 17th percentile on both i. sections.
j. Enter number or percentage who scored below the 17 th percentile on both j. sections.

k. Enter the achicvement rates (grade levels/year)

a. Enter number of dropouts from elementary school.
b. Enter number of dropouts from junior high school.
c. Enter number of dropouts from senior high school

Non. white	Non-white	White	White
\cdots under	$\$ 3,000$ or	under	$\$ 3,000$ or
$\$ 3,000$	over	$\$ 3,000$	over

d. Fitter number of truants in elementary school.
c. Enter number of truants in junior high school.
f. Enter number of truants in senior high school.

g. Enter the average income of each of the four groups listed.

h. Enter number of students in each group.

a. Enter the mumer or percentage of students whose parertes have only an elennentary schoots educalion or less
b. Enter the number or percentage of students who have physical handicaps.
c. Enter the number or percentage of students. who have less than two parents at home.
d. Enter the number or percentage of students in classes for vhich the overall class averagc on achievement tests is only $3 / 4$ or less if its school grade level.
e. Finter the number or peicentage of sludemts ohose scores on me or more achievement tests were only $3 / 4$ or less of their school grade level.

Non-White	Non-White	White	White
Under	$\$ 3000$	under	$\$ 30000$.
$\$ 3000$	Or 0ver	$\$ 3000$	over

(1)
a. List compensatory services b. Enter numbers currently offered (counseling, free lunches, anything not related to instructions).
of grades in
which service is offered.

RIUE:
\therefore Is the service new?
d. Finter the number of paraprofessionals associated with service.
c. Enter amount of space used for scrivice (sq. ft., number of classroorns, etc.)
(1)

Enter total budget of service
g. Enter total rumber of students participating in serwio

Break down total number into numbers of students by race and family income, as follows:
h. Non-white
uncler
$\$ 3000$
i. Non-white j. White,
$\$ 3000$ ar over
whac: $\$ 3000$
k. White, $\$ 3000$ or over

 spends on service. 1. Hours m. Days

Finter disadvantagc(is) that serviede is specifically designed to help compensate for, by this code: $(0)=$ none of these; (1) $=$ faraily poverty; (2.) = parents' low leve! of education; (3) = physical handicaps; (4) = broken temily situation; (5) $=$ whole class ach. lag; (6) = incividual ach. lag.

Program iumber \qquad
QUESTION 6 (Eill out one form for each contemplated prograrin of services; (O.: Évench after a row of blenks hes been filled out describing a given scruice, Program) that service can be used in other programs without recopying the row of blanks.)
a. List the services making up one coniomplated program which might be adopted under Title I.
b. Finter numbers of grades for which service would be offered.
c. Would the service be entirely new?
d. Firtar the number of parapro-
-fessionals to be associated with service

```
e....ter amount of space to be used in service (sq. ft., no of class. rooins, etcal.
```

g. Finter totel namber o? stuctents to participate in scrvice.
\therefore Amount of tizne typicel participant spends on service.
h. Hours i. Dejs /day : /week
j. Weoks

i. Enier disadvantageis) that service is specifically designed to help compensate for, by this code: (0) = none of thesc; (1) =family poverty; (2) $=$ parents' low level of education; (3) = physical handicaps; (1) = broken family situation; (5) = whole - class ach. lag; (6) $=$ individual achinvement lag.

QUESTION 7

a. Finter arciage fublication clate of textbools currently used.
b. Enter averege
c. Ente: a'crage number of pupiss per teacher.
d. Finter average number textbooks jes pupil.

Mathematics science, related

courses

Elem. 1 thr. 3
Elcm. Sthr. 6
Junior High
Senior High

English, writing,
history, literature, related courses

Elem. 1 thr. 3
Flem. 4 thr. 6
Junior IJigh
Scriou Hig:

c. Enter averagef. Entcr ave- Enter average class time number desks per pupil. rage armert Hrs. . Days . Wks. Instructionat /day /week /year Budget.

\qquad

QUESTIION 8 (One for each Program)

Fill out one form for each contemplated progran of instructional revision; after a row of blanks has been filled out describing a given change, that item can be listed in other prograne without recopying the dow of blatis.
(List the instruction, elated revisions making up ene contempleted program that raight be adopted under Title I.
b. Enter grades c. Enter average affected.

Enter intend number of textbooks per pupil.
g. Enter intended number of desks fer pitpil,
h. Enter intended Instructiona.] Fiwige:

Enter intended class time:
i. Hours j. Days K. Weels /day /uec! /ycen

		-			\ldots	
:		. . .	- .			
- .	-	.. . : .				
.	-	- .	1			
			\cdots			
\cdots	.					
		\square	\cdots	.		$\stackrel{\square}{+}$
$(1$		- $\quad \therefore \ldots \ldots$	-			
ERİC.	\therefore	169		-	-	

APPFNDIX C
 CHANGING THE MODEJ

The OECE model is based on the assumtion that the cducational process can be accurately sinulated using a finite number of analytical variables. These variables have certain functional relationships among themselves, and various parameters, or weighting factors, control the magnitude and sign of these relationships.

The authors recognize that in school systems with different environmental conditions, certain factors specified in the present analysis in the model may affect the education of a group of students differently than is presently indicated by the weighting factors of the model. In addition, new educational and envirommental factors may influence the students. The user may then desire to change several of the weighting factors, and possibly add new variables with respective weighting factors. As the model is presently programmed, it is easy to change the weighting factors. The method for doing this will be discussed below. The other type of change which seems most likely is adtling a variable in one of the equations. For example, if future rescarch shows that a teacher's age significaitly affects the performarece of his claseses, then this variable should be aded in to the equation

1. Changing a weighting factor.

Weighting factors are discussed in Chapter III. A comprehensi?a list of files containing them is presenterlin Appendix J. After deriding which file must be changed, and what the nev values are, the file can be called into the computer and changed. 'She user-computer dialogue should look as follows (computer statements are underlined, user statements are enclosed in quotation marks):

```
"OLD"
OLD FILE NAME -- "(File Name)"
READY
(The contenst of the file are listed)
When the user has located the specific number or numbe.s he wishos to change, he must retype the line or lines containing the numbers exactly as they appeared before, except for those to be altered. The formates of all of these files are presented in Appendix D. After the changes have been made, it is wise to list the file once more, both for purposes of obtaining a. cleari copy of the altered file; and for checking the changes to see if they have been properly made. The file can then be sent to permanent storage. The computer command sequence is as follows:
```

"LIST"
(The contents of the file are listed)
"SAVE"

```
READY
2. Aclding a new variable to the model.

This type of change is relatively complicated, and causes changes in several locations. The following files are affected:
a) The variable file--a new one must be created.
b) The weighting coefficient file -- an extra value must be added. (thereby changing the dimensionalijty)
c) The computing sub-routine--the statement in the relevant sub-routine which computes the expression being altored must be chenged. .
d) The MAIN Program--
i) the statement which reads the file into memory must created.
ii) the dimensions of the weighting coefficient must be changed in the statement which reads the weighting coefficient file.
e) The. \(\$\) FILE statement - - the new file name must be added,
f) The COMMON statoment (in every sub-rotine)--the new variable name must be added, and the dimension of the weighting factor must be changed.
Each of these changes (witli the exception of a) is accomplished by calling in the particular file, retyping the line to be changed, and storing the result. The command sequence is:
```

"OLD"
OL,DFIIF, NAME-- "(File mame)"
REAIMY
(change the neceessary lincs)
"SAVE"
READY

```

Step a) involves creating a new filc. The command sequence is:
"NEW"
NFW FILF: NAMF -- "(File name)"
REAIY
(Type in the file information according to the format of a similar file (sec Appendix D) )
"SAVE":
READY
Step d) involves changing the dimensions of the variables in the read statements. Most files arefead by means of two input/output sulb-ronticerRDAD for vector input, and READ 1 for matrix input. The dimensions of the vector or the matris are present in the calling sequences. The exact form of the calling sequence is described in the program listing of Appenclix \(F\) (See the listing of RI:AD, and READ) l).
 of the same type as the one being created. For example, if teacher age is taxen to be another variable in the calculation of teacher quality, then it should be treated in the same way as teacher experience (which appears in the same formula). Reference to teacher age will occur in the same places as references to teacher experience. The weighting coefficient will be the same, the statement in the sub-rouline which uses the variable will be the same, the wall to the RFAD sub-routine to read teacher age should occur immediately before or after the call to the READ subroutine to input teachers exper;ence, and the teacher age file should have the sane format as the teacher experience file.

Chapter III. describes the theoretical structure of the model. the decision on which variable to add and where to include it can be marle referring to that section. The filc format can be found in Appendix D, and the strps involved in making the change are found in this appendix.

 overall flow, sub-routince and datat files. The detail will be such that the
 as a reference.

\section*{Program Structurc}









 arrangomont for daia, and "chaning:" for the , wofrant,

pros: : in M
 ing sequence among them are iterative, i. e. . they ifecach callad a mamin r of times. The programs which are outside the sel are called only suce eath, and are therefore natural candidates for chaining. (The chaining proces:


 involves a read from diace and a compilation cach time.)

There is ton much date to all reside jn core at the anme tianc a: the programs. The solution to this pa mblen invalved ankint w:e of the mitural cycle of the MAIN Program. The pregram loops through its calculation once for each grade and student type. The variables and paramoters were stored
in files, each having its own file. The files were brolen into units (lines) of grade and student type. At the start of each loop, the program reads the line associated with the grade and student type of that particular loop, for every variable. In this maner, a lar" amome of file manipulation is the price paid for the limitod core st, igr. The storage is treated hiorarchically with the core as high level storage, a d the disc a low level storage.


MAIN---.-The main program; handles the strategic aspects of the rum

READ-.-. I/ \(\varnothing\) routine; reads a line of data for a given student: (Vector) type and grade from a given file.

REAL 1-.- I/ \(\varnothing\) routine; reads a group of lines of data (matrix) for a given student type and grade from a given file.

IPSF-----A major subroutine which projects a student type from one grade to the next, apply in the normal school flow and the intervention processes.

SCHINL \(\phi\) - - The school flow routine; calculates the normal student transitions from one grade to the nest using the Markov process

IMPFD-.-. Computes the index of impedence
INSTRU--- Compules the index of instruction

PFVECT- - Providas the coniocting relculations betvoce the srhool fow atd intervorition procesons.

DRPФUT--Computes the numbers of dropouts and truancies for eash student type and grade.

CAREER-- Fstimates the numbers of students expected in each carecr category in the futhe based on their school performance.

EQUAL--- Computes the quality of educational oppertumits
COMEFF--Computes expected lifeli, earnings based on CAREER output.

FLEX-.-.- Prints final output.

Data Files
I'he data files of the rnodel can be divicled into sis categories. They are files containirg:
1) Stuclent characteristics
2) School characteristics
3) Compensatory Program Characteristics
4) Weighting factors
5) Intermediate results
6) Output variables

The data files used by the program are described below: Files whose data are a function of student type and grade factually, a grade index is uscd; if the set of grades in which achievemont tests are given has eloments \(1,3,5,6,8,10\) the grade incices are \(1,2,3,4,5,6 ;\) the grade indes always ranges from 1 to the number of grades tested.) are arranged so that at least one line corresponds to a particular student type and grade index. Fach liac contains intogers specifying its student type and grade indox. If a variable is a function of one but not the other, then the integer in the position of the unrelated quantity is set to \%eto, For example,
\[
1020 \quad 3 \quad 6 \quad 0.59,0.85
\]
descriles variables pertainint to stuclent type 3 , grade index 6 ,
\[
1050 \quad 4 \quad 0 \quad 0.36 \quad 0.15
\]

index. In general, the sequence is (the lower line is the FORTRAN foxmat)

Line Number
I4, \(\quad 1 \mathrm{x}\),
Student Typo
11,

Grade Index
12,

NVariables NF 6.2 or NI

\section*{Student Characteristic File}
\begin{tabular}{|c|c|c|}
\hline Filc & Description & Format \\
\hline LASTI 1 & Numbers of students in the grade before the Title I Program, (by student type) average & 14, 2:2, 14 \\
\hline INGLFV & The average achievement levels in the gracle before the ritle 1 Program (by student type and test category) & 14, 212, 2F6.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline File & Descriplion & Formet \\
\hline STATIN & The average achievement rates in the grade before the Title. I Program (by sluednt type and test cusgory) & 14, 2I2, 2F\%. 3 \\
\hline PPINIT & The percentages of students in the above-below threshhold categorics in the following order ( \(b=\) below, \(a=a b o v e\) ) (bb, ba, al, aa) (by student type) & 14, 2I2, 4F6.3 \\
\hline DIS & The percentages of students who have each of the six factors of disadvantage (by student type, by sis). & 14, 212, 6F6.3 \\
\hline
\end{tabular}

School Characteristics Files
\begin{tabular}{|c|c|c|}
\hline File & Description & Format \\
\hline INIT' & Number of grades, number of student types, grade index of initial Title I applicatior, grades (years and month) of achievernent tests. & GE Frec Format \\
\hline B1, B2 & ```
Regression cocfficients relaling
achievement lag to dropout rates
    Rate = 1/100 \cdot ( }\mp@subsup{\textrm{B}}{1}{}\cdot\textrm{Lag}+\mp@subsup{\textrm{B}}{2}{}
(by grade inclex)
``` & 14, 212, 1x, F6. 3 \\
\hline C.1, C.2 & ```
Regresuion cocficionts rolotine:
Achewomem! lo: {n 1rumbejes rames
Rate = 1/100 (%1 Lag + C2) (by
grade index)
``` & 11 \\
\hline MARKOV & Markov transition matrix presenting transition probabilities among states of being below (b) and above (a) a threshhold in test categorics. (by grade index) For two test categories, the matrix is organized as follows, in the direction from-to le.g., bb-ba is from below-below to below-abovel & \\
\hline & \(\left(\begin{array}{cccc}b b-b b & b b-b a & b b-a b & b b-a a \\ b a-b b & b a-b a & b a-a b & b a-a a \\ a b-b b & a b-b a & a b-a b & a b-a a \\ a a-b b & a a-b a & a i-a b & a a-a a\end{array}\right)\) & \\
\hline
\end{tabular}

\section*{Compensatory Program Characteristics Files}
\begin{tabular}{|c|c|c|}
\hline File. & Description & Format \\
\hline RECEN & Recency of curriculum materiol (Student type, by grade inclex, by test category) & 14,2I?, Ix, 2F6.3 \\
\hline TCHEXP & Teacher experience index (by student type, by grade, by test category) & \\
\hline TCHRS & Pupil/Teacher Ratio (by student type, by grade index, by test category & " \\
\hline TEXTS & Texthook/Pupil Ratio (by student type, by grade index by test category) & " \\
\hline DESKS & Desk/Pupil Ratio (by student type, by grade index, by test category) & 11 \\
\hline TCHBUD & Instructional Budget (by student type, by grade index, by test category) & " \\
\hline TCHDYS & Days/weck of instruction (by student type, by grade index, by test category) & " \\
\hline TCHWKS & Wecks/year of instruction (by sterleat lype, by grade index, by test category) & " \\
\hline CTHRS & Hours/day of instruction by student type, by grade index, by test category) & I4, 212. Ix, 2F6. 3 \\
\hline SRVICS & The number of services (by student type, by grade index) & 14, 212,14 \\
\hline NEW & Service new or old (by student type, by grade inder, hy service) & \[
\begin{aligned}
& 14, a 12, \text { nI4 } \\
& \left(11-\frac{\#}{7}\right. \text { of services) }
\end{aligned}
\] \\
\hline PARA & Number oi paraprofessionals for service (by student type, by grade index, by service) & 14, \(212,1 x, n F 6.3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline File & Description & Furmat \\
\hline SPACE & Space/pupil for service (by sudent, by gracie irdes, by service) & I4, 212, Sr, nF6. 3 \\
\hline SBUDGT & Service budget (by student types, by grade index, by service) & 14, 2I2, 5X, nF6. 3 \\
\hline SHOURS & Hours/day for service (by student type, by grade index, by service) & 14,212, IX, nF6. 3 \\
\hline SDAYS & Days/week for scrvice by student type, by grade index, by service) & 14, 2I2, IX, 12F6. 3 \\
\hline SWEEKS & Weeks/year for service (by student type, by grade index, by service) & 14, 2I2,1X, \(1 \mathrm{FF6} .3\) \\
\hline \multicolumn{3}{|l|}{Weighting Factor Files} \\
\hline File. & Jescription & Format \\
\hline SQW & Service quality weights (dimansion 2) & 15, 1X, 2F6. 3 \\
\hline SIW & Service intensity weights ( (limension 3) & I5, 1X, 3F6. 3 \\
\hline SPW & Soreje praject weights (dimension 3) & 15, AX, 318.3 \\
\hline SW & Service component weights (dimension 3) & 15, IX, 3F6. 3 \\
\hline ZW & Disadvantage factor weights (dimension 6) & 15,1X, 6F6.3 \\
\hline TQW & Instructional quality weights (by student type, by grade index b) 2, by test catcgory) & 14,12,12, 1X, 2F6. 3 \\
\hline TIW & Instructional intensity weights (by student type, by grade index, by 4 , by test category) & 14,12,12, 1X, 4F6. 3 \\
\hline TW & Instructional index weights (by student type, by grade index, by 3 , by \({ }^{2}\) st category) & 14,12,12, 1X, 3F6. 3 \\
\hline
\end{tabular}

Intermediate Results Files:
\begin{tabular}{|c|c|c|}
\hline File & Description & Format \\
\hline OLDZ & Impedance value of the baseline case (by student type, by grade index) & I4, I2, I2, . \(\mathrm{X}, \mathrm{F} 6.3\) \\
\hline OLDC & Instruction index value of the baseline case (by student type, by grade index, by test category) & I4, \(12, \mathrm{I} 2,1 \mathrm{X}, 2 \mathrm{~F} 6.3\) \\
\hline OLDSER & Service index value of the baseline case (by student type, by grade index) & 14, \(\mathrm{I} 2,12,1 \mathrm{X}, \mathrm{F} 6.3\) \\
\hline
\end{tabular}

\section*{Output Files}

File
A

\section*{Description}

Estimated achievement levels (by student type, by grade inclex, by test category)

DROPS The numbers of dropouts (by student type, by grade index:)

TRUANT The number of truancies (by student type, by grade index)

NOSTUD The number of students remaining (by student type; by grade indes:

Ol Numbers in each career category potential and expected lifetime earnings for student type 1 (by career category)

O2.
O3
Same for student type 3
O4. Same for student type 4

Format
I4, I2, I2, 1X, 2F6. 3

I4, I2, I2, I4

I4, I2, I2, I4

I4, J.2, J. 2, I4

Standard Matrix
GE FORTRAN

11

11

11

APPENIIX E

FLOW CHARTS

(REAJ WEIGYTINC COFFFICIENFS: SQW, SIW, S上w, SW, \(\not \subset W\)
\({ }^{1}\),
READ THE BASE-RUN JNDEX: BASE

READ NUMBER OF STUDENT TYPES: TYPMAX, NUMBER OF GRADES: GRDMAX, INITIAL YEAR OF TITJF: I APPLICATION: IN YFAR, GRADFS OF ACHIEVEMENT IFSTING: GRADE (IG), IG = 1, GRDMAX
[17
COMPUTE THE YEAR INCRIMFNTS BETWEFN ACHEVENAENT TESTINGS DYEAR (iS)


FIND INITIAL GRADE INDEX BY COMPARING
THE INITAA, GRADE: WITH EACH GHADE: (IG): IGilNI'T

READ IN INITIAL DATAFOR THIS TYPE: NSTLST, ALAST, STLAST, PPLAST,

REWIND AIL TIJIS NOI FUNCTIONS OF STUDEN:
TYPE: RECEN, TCHRS, TEXTS, DESKS, TCHBUD, CRHRS, TCHDYS, TCHNKS, MARKOV, \(\mathrm{B}_{2} \mathrm{~B}_{2} \mathrm{C}_{1} \cdot \mathrm{C}_{2}\)


REAU ALI, DATA FOR THIS GRADE, TYPE:
RFCEN, TCHEXD, TCHRS, TEXTS, DESKS,
TCHBUD, CTHRS, TCHAYS, TCHWKS, MARKOV,
TQW, TWW, TW, SRVICS, NEW, FREF,
PARA, SPACE, SBYGiT, SHOURS, SDAYS,
SWEEKS, RE

IF TIIS IS A DAST NUN RIAAD DATAMNON


REAi ALL DATA FOR THIS GRADE, TYPE:
RECEN, TCHEXD, TCHRS, TEXTS, DESKS, TCHBUD, C'THRS, TCHAYS, TCHWKS, MARKOV, TQW, TIW, TW, SRVICS, NEW, FREE, PARA, SPACE, SBYGI', SHOURS, SDAYS, SWEEKS, REL


SAVE ThF DATA FOR THENEXT CRADE: UPDATE: THE FOLLOWNG: ALAST, SHLAST, PYIMST, NSTLST, NCISJT

CYCJE
\(\angle\) TO THE NEXT GRADE:

FOK TiETAST CRADE CALL T DIOPOUT SUBMOUEL TO PAOJECT DEOP-OUTS AND TAU NTS TO THE END OF THP 1 Th GYADE


Applies the Marliov process to transform the Marlow state of one grade group to that of the following grade group.


Computes an index of the sturemi population innpedance to learimg.


FICK UF TVE NUMBER OF SERVCES OFFERBO: GM, FGM, JAVICS


GYCLE TUTROUGH ALL SERVICES (C)


ACCUMUUATE TO OBTAIN AN OVFRALL SERVICE; LEVEL INDEX: SERVIC

COMPUTF EFFFCTIVFNESS OF ADDITIONAI, SERVICFS: EFFECI . 1 ,



Computes an inces of the worth of the instruction being offered by the school.

\section*{INSTRU}


DETERMINE WHETHER MATERIALS ARE OLD
ENOUGH TO REPRESENT A MAJOR INSTRUCTIONAL PROBLEM, IF SO WEIGHT TEACHER QUALITY MORE HEAVILY: RECFN, PHI, THRESH, TQW

GOMPUTE THE INDJCFS OF TEACHING QUAJITY, INTENSITY, AND DURATION: FCHQAL, TCHINT, TCHDUR

COMPUTF: OVERALL, INSTRUCTIONAI, INDEX: INSTRU \(\binom{\) RETURN }{\(\cdots}\)

Compules the new achievernent rates given an incicanent clue to the Indervention \(\mathrm{F}_{\mathrm{i}}\) ocess and moves the population into its new states.

\section*{PFVECT}


SET TIFE NUMBEN OF COURSFS: NN


COMPUTE: THEPASS-FAIL VECTOR LENGTH: MAX
,


FOR FACHINNEX OF TEF GROUP, MOVE UNDERACHIEVERS (IN RATES OF ACHIEVEMENT)

TO OVGRACHIEVFRS: PP (J), PI'(L)


IIAS
SUBJECT BFEN
NO



COMPUTE THE CHANGE IN INSTRUCTION FROM THE PREVIOUS YEAR : DC


COMPUTE THE CHAIVGE HIN INSTRUCTION DC

COMPUTE THE CHANGE IN STATE DUE TO INTERVENTION : SIP


COMPUTE THE CHANGE IN STATE: DSSF DUE TO THE NORMAL PROCESS



COMTUTE THE ACCUMULATED ACHIEVEMENT
Level at the beginning of the nexj Gilaide : A (COURSE)



COMPUTE THE AMOUNT THIS GRADE IEEVEL LAGS BFHIND THE ACTUAI, GRADE: AIAGBA Oly RGAD THE DROOOU \& TRUANCY REGRESION


COMPUCE THF NUMBERS OF DROPOUTS AND TRUANTS bY REGRESSING JHA:SE VAIUES AGAINGOi ACHIEVEMíNT JAG: TRUANT, DROPS
 SUBTRACT DROPOUTS FROM THE PRESEN'



Distributes the Students into the Various Career Categories

INPUT THE GRADE LIST AND THE NUMBERS OF STUDENTS IN EACH GRADE:

1
READ THE ACHIEVEMENT LEVELS OF EACH STUDENT TYPE FOR EACH GRADE:


V
INPUT THE NUMBER OF DROPOUTS BY GRADE AND STUDENT TY PI.
\(V\)
DISTRIBUTE THE: DROPOUTS INTO THE LESS THAN TWEL,FH GRADE COMPLETED CATEGORIES

DISTRIBUTE THE GRADUATES INTO THE ACHIEVEMENT QUARTILES BY SOCIOECONOMIC TYPE MATRIX


SET THE PROBABILJJES OF PROKEEDING fROM JOSITIOAS IN THE ABOVE MATRIX TO THE VARIOUS CAREER CATEGORIES


COMPUTE THE NUMBER IN EACH GAREFI CATEGORY AND OUTPUT THE RESULT


CHAIN TO EQUAL,

Compute the Index of Fentality of Educational Opporturils

\section*{EQUAI.}


READ THE GRADE LIST AND THE
ACHEEVEMENT LEVEIS
 of EDUUCATIONAL, OPPORTUNITY


\section*{COMEFF}

\section*{READ DATA FROM CAREER AND TEE GRADE LIST}
\(\xrightarrow[7]{7}\)
READ THE NUMBERS OF STUDENTS BY GRADE AND STUDENT TYPE
\(\square\)
COMPUTE THE SOCIAL FACTOR
51
COMPUTE THE RACIAL FACTOR
5
COMPUTE TEE E ACHEVEMENIFACTOR
r
COMPUTE THE POTENTIAL AND EXPECTED LIFETIME EARNINGS

WHITE OUT' THE RESUL'I'S


CHAIN TO FLEX

FLEX is the output routinc which simply wrints the results produced in all of the previous sections.

AノF円NOMXF

ERIC • 197.199

MAI：

1010COR M IA PROGRAN

1030
\＄FILE SQU，SIV，SPV，SU，ZU，INIT，LASTI，INGLEV，


\(1060+\) TJM，TH，SRVICS，NEU，FREF，PAFA，SPACE，SBUDGT，
\(1076+\) SHOURS，SDAYS，SWEEKS，DJS，D1，BE，C1，C2，
1 GOD + A，DRUÁS，TRUAMT，PP，MOSTUD，STAT，OLDE ，OLDC，
109O + OLOSER，ADAR，REL，X，ANC
1100 SUSE COWMOM
llid SUSE 2aClafis
1120 DIAENGIOR AA（19），JAA（10）
1130 FiTEGER DROPS，TPUAMA
\(1135 \quad\) ZZZ \(\because=A B(A(0, O U S E), 1.5,1.0 .6)\)

1160COM，STHEETA TYPE．
1176 Cu औ．READ the various veightidag coefficients
118GCON．SERUIC．QUALJTY UEIGHS
\(118 \%\)

\(1010 \quad \operatorname{REnD(2)},(S I W(1), 3=1,3)\)
l2anconc ShRVICE PRONECT WEIGILS
1235 READ（3）（SPU（1），\(I=1,3\) ）
1280Con．
125 ？
SERVICE UEIGHTS
196000
1．7．
12かったい。
1250
1333
13 Cl PRIMT＂．＂
131000 A
1320 COH
133600 m
\(134 . \mathrm{E}\)
\(135000 \%\)
1368
1379

मomenom lesata

PRINT，IS THIS A BASE LINE RUN； 1 IF YES，O IF NO．＂
INPUT，BRSE
PRINT＂TYPE GRADEIUDEX＂
READ THE NUMBER OF STUDENT TYPES，THE HUNBER OF GRADES
TO BE EMMTMED，THE \(I\) HITIAL YEAR OF APILICATION OR


\(\mathrm{d}=\mathrm{GRDH} A \mathrm{~A}-1\)
1380 DYEAR（I）\(=\) GHADH（1＋1）－GHADE（I）
1390180 cominum
1400COH．START MAIN LOOP
1410COAI．CYCLE THRU ALL STUDEUT TYPES
1420
143GCOM．FIND THE IHITIAL GRADE JHDEX
1440
1450 IF（GRADE（I）－1NYEAR）1，1，110
1460 I IGIHIT＝I
1470110 CONTINUE
J \(\triangle\) OOCON．READ IN THE INITIAL DATA FOR THIS STUDENT TYPE．

\(1490 \quad I G=0\)
\(1500 \quad\) CARL \(\mathrm{FEAD}(7,1,1, A A, \mathrm{HSTLST})\)
1510 CALL \(\operatorname{PEAD}(5,8,2, A!\operatorname{Si} 1\), IAA)
\(1500 \quad\) CALL \(\operatorname{READ}(9,0,2, S T L A S T, I A A)\)

I59 CALL HEAD (3A, 0 , 6, DIS, IAA)

1560COM. I.E. RECEN, TCHEXP,TCHRG,TEXTS, DESKS, ZCHBUD,
1576COM. CTHRS, TCHDYS, TCHWS, HAriROV.
15En DO \(115,1=12,2 . \%\)
1590 RENIHD J
1609 115 COMIIHUE
1615COH. NLSOB1, B2, C1, C2.
\(1680 \quad D 0116, I=35,38\)
163: RE!!tid
1640 116 COitlivi:

1660 IGKO GRDMAX-1
1670 DO 159 IG::IGINIT,IGRD
160: PaTdig TYPE, JG

17 EQ CAL.L. EEAD(12,1, \(2, A M\), RLCEM)
1710 GNLL FEAD (13, G,2, TCHEXP, IAA)
1720 CALL PEAD(14, D,2,TCHRS,IAA)
1730 CSll. \(\operatorname{BEAD}(15,0,2,7 E X T G\), IAA)



\(1770 \quad\) CALL \(\operatorname{HEAD}(19,6,2,16 H D Y S, 1 \pi a)\)
1780 CALL READ \((20,0,2\), TCHWKS,IfA \()\)
1790 CALL READI (21,4,4,4, JAFKKOV)
1800 CALL READI \((22,2,2,2\), TQW)
1810 CALL READI \((23,4,2,1, T I W)\)
182E CALL FIEADI \((2.4,3,2,3,1,1)\)
183: CAII PEAN ( \(25,1,1, A A\), SivICS)
\(1849 \quad L=\) SRVICS
1850 CALL \(\operatorname{FiADD}(2 G, 1, L, A A, i L i A)\)
IESO CALI. READ ( \(97,1,1, A A\), ГTEE \()\)

\(!880\) CALL READ (29, \(1,1, S P A C E, I A A)\)
1890 CALI. REND \((30,0,1, S B U[) G I, I A A)\)
1900 CALL READ ( \(31,0, L, S H O U R S, I\) AA)
1910 CALL READ (32, D,L,SDAYS,IAA)
1920 CALL READ (33, G,1., SUEEKS,IAA)
1930 CALL. RLAD (49, \(1,6, A \cap, R F L)\)
1940COM, IF THIS IS HOT A BASE RUN, READ IH THE OLD FILES.
1950 IF(BASE)20,20,30
1960 20 CALL READ (45,0,1,OLDZ,IAA)
1970 CALL READ (AE, G,2,OLDC,IAA)
CALL READ (47, \(0,1,0 L D S E R, 1 A A)\)

MAIN COHILAUED

20nOCOH. GAlL TRE IHTESVETTIOH SCHOOL FLOH SUBMODELS
201030 CAl.L. LFSF
2g2GCOH. CALL THE DHOPOUI SUBEGDEL.
2030 CALI DRPOUT

205000M. NRITE THE HESULTS OHTO OUTPUT FILES
2ESO URITE(39,800),ITHG,TYPE,IG,A(1),A(2)
2670 WRITE (4E,800), IITMG,TYPE,IG, (PP (I), \(1=1,4\)
2030 WRTTE (4t, 890 ), ITTHG,TYPL,IG,S(1), S(2)


211000月. SAVE THE DATA FOR HE HEXI GBNDE.

2130 Al.AST(E): : © (2.)
\(2140 \quad\) SilAsici):S (1)
\(2150 \quad\) Sil.AST(R):S(8)
2160 DO 136, I=1, 4
217 PPLAST(I) = PP(I)
2183 133 COHTAUE
21s\% MSTST = HOSTLD

22.0150 continile
\(22.20 \quad 1 G=G \beta D i n x\)
2236 CNLL DRPOUT
22.iscong CYGIE TO THE REXT TYPE.


? :
2286 EUDFIIE 41.
2290 ENDFILE 43
2303 PRIHT, REACHED ELid OF FROGRAM"
2305 SCHAIH CAPEER
2310 E.HD
2323 SUSF: RTAD
2330 FITE HFA!
2340 SUSSE IFSF
2350 Silse DRPOUT
2360 SOR SI7E

READ

1
20col. \(.3500 \%\). \(42 \mathrm{CO}:\) \(55^{2} \mathrm{CO} \mathrm{Ci}\) 600 H 76 COH . 8000.4 . 93C0M. 100
110
120
130
140
396
\(3!a\)
320
333
340
350
350
376
380
390
420
A!
3603

- c .

3230 COM
3940
3050 COH.
3060C0H.
3070 COH .
3030
\(305:\)
3163
3110
3120
\(313 \mathrm{c} C 0 \mathrm{~m}\).
3110
315000 i .
3160 COH .
3170 CO i .
3180
3192
3200
3210
322000 M
3230

I/O ROUTIME, READS VEC'TOR OMAMTITIES,

 OTKERUSSF. DUMIM

REAL MARKOV


IHTEGER REL, BASE, CGLEGE, TYPE.
INTEGEF TYPBAX, GRtmA
Coman B1, HP, Cl, re, NOSTUD, TRUBAT, IBEAR



COMO: SQH(2), SIW(5),SPU(5),SW(3), ZU(6), RECEN(3)

Coman A(2), PPI.AST(1), STLAST(3), h1AST(2)
comon typinx, GEADE(12), DYEAR(12)
COMMON SERVIC,EASE OLDE(2)



CHECK FOR INTEGER OR FLOATING PGINT FORAT
IF(FORNNO)21,1,21
IIECIMAL FOREAT.
CHECK FOR EMDFILE.
1 IF (EADílle Filema) 3,?

PRIMT "FIIE: NUMPER -- *, FILENO
GEUIND FILERO
GO TO 13
KEAU di ThL itós had Gobide
3 READ (FILEHO, 51) TYPEI, IGI
grade stored in common, if tiey nitch, read ili the
DATA VECTOR. IF HOT, READ IA THE MEXT RECORD.
IF (TYPEI) 5,6,5
5 IF (TYPEI-TYPE) \(1,6,2\)
6 IF(IGI)4,15,4
4 IF (IGI-IG) 1,15,2
CHECK FOR ENDFILE A SECOND TIME.
11 IF (EHDFILE. FILENO) 13,42


iAA - the vector to be filleo if the varindue ls Integen;



FLGATIUG POINT REND ROUTINE: READS IN DATA ACCTADI品G TO

CHECK IF THE TYP̈ AHD GRADF READ IN MATCH THE TYPE NMD

READ COMTHUBD

```

325月 13 RROD (FILEPO, 51) TYPEI, IGI
3269 IP(1YかE1)16,1\%, 6

```

```

323017 TV(IG!) 1\%,15,14

```

```

33@BCOU. BACKSPACE THE RECOFD.
$3310 \quad 15$ EACKSPACE FILENO
3320CORA PEAD IN THE DATA.
33.36 KCAD (FIDEMO, 52), TYPEI, IG1, (AA(I), J=1;DJHEN)
3340 GO TO 4.6

```


```

337GCOM FOR DECIMAL KEAD FOUCTHE.

```



```

3A1G REWIND FLLENO
$3420 \quad$ GO T0 31

```

```

36? I I (TVF:1)25, ?6, 25

```

```

$34 G 726$ IF (IGi)24,35,24
3470 24 IF (IG1-1G) 21,35.2.2
3483 31 IF (ENDFILE FILENO) 33,43

```


```

35: \quad ? if

```

```

$3530 \quad 34$ IF (IGI-IG) $31,35,31$
$3540 \quad 35$ EACKSPACE FILENO
3550 READ (FILENO,53), TYPEI,IGI, (IAA(I), I = I, DIMEN)
3560 GO TO 40
35\%OCON. IF THE VECIOR IS NOT FOURD AFTER A SFCOOND PASS THROUGH

```


```

3600 A2 PRIHT 809, FILEMO: TYPE, IG
3510 8月号 FORUAT "FJLE NUHESR", Iる,

```

```

$3634+$ "Giraver GRUUi" ", 12)
3640 STOP
3550
3660
3570
3680
51 FOR:AAT (5X, I1, 1X, I2)
52 FORAAT $(5 X, 11,1 X, 12,10 F 6,3)$
53 FORIAT ($5 \mathrm{X}, 11,1 \mathrm{X}, 12,1615$)
AE RETURH

```

\section*{READI}

1
20．6日：
33COR．
A 3 COH
50 CO i
690011
76 cu il
100
110
120 IMTEGR SFVICS，FREC，RECFH
130 INTEGER RPL，BASF，COURGE，TYPE


310 COMOH NSMST，DEFP（3），OLDR，SFVLCS，RLL（6）










4903 DINEHSIOR An（64）
40IGCON．MATRIX READ ROUTTRE


\(\therefore\) 小呈
4．．． 1 －
4060COH．CHECK FOR ELU OF FILE．
4079 IF（ENDFJLE FILENO） 3,2
\(4088 \quad 2\) GOTO（11，12），JJ
409060 n.
4100
4116006．
412日CG日．
1136
READ IN THE TYPE AND GRADE．
3 READ（FII．ENO，51）TYFEL，IGI


IF（TYPEI）15，15，15
4140 15 IF（TYPEI－TYPE）I， 16,2

4166
4178 COH.
\(4180 \mathrm{CO}:\)
1153
4203
12.10

4220
A IF（1（i）\(\cdots(i) 1,21,2\)
IF TYPE AMD GRADE WATCH THOSE IN COMEON，BACKGPACE AMD
READ IN THE FIRST RON VECTOR．
21 BACKSPACF．FILENO
READ（FILENO，52），（AA（1），I＝1，DIMEN1）
IF（1）MEH2－1）25，13，25．
423OCOM．READ IN THE OTHER RGW VECYORS，CHECKING FOR TYPE AND GRADE．
4248
4250
6 IF（ENDFILE FILENO） 7,2

READI CONTIDUED


```

4280 17 IF(TYPEI\cdotsTYPPE)G,18,6
4290 lOIF(IG1) S.2?,G
4300 8 IF(IGL-1G) 6,22,6
4313 2P BACRSPACE FTLENO

```

```

4330 - NI=NAXDIH?(II-1)+1
4340 N2=N1+DIMENI..1
4350 READ (FIIENO, 52), (A\cap(I), I=NI, \%:)
4360 % COHTINLE:
4370 60 10 !3

```

```

4390 FRINT "FIL.F NUBGER", FJI.ENO
AAEO RENIND FIIENO

```

```

4420 J.:=2
440% GO IO 1
444DCUH. IF WATKIX IS NOI FOUND, YRIN'I ERROR WEGSAGE MMD STOP.
4450 12 PRI|T 80\&%, FILENO, TYPE, IG
4t60 EOED TORBAT(" FILE MUSDER",J3,

```


```

4190 STOM
4500 51 FORMAT (5X, I|, 1X, I2)
4510 52 FORIAT T(8X,10F6.3)
150% 13 RI:Tlr::

```

\section*{IPSF}

1 SUBROUTTAE IPSF

20 com
30 COH .
40COM.

\section*{100}

110
120
130
140
300
310
320 330

Prodects the students achifvenerts foward in in in

PRUCESSES
REAL MARKOV
INTEGER TRUAMT, DROPS
INTEGER SRVICS,FREE, MEGEN
IHTEGER TEEL, BASE,COURSE, TYPE
IHTEGER TYPIAN: GRDNAX
COMNON B1, E2,CI,CR,NOSTUD, TRUANT, INYEAR
COMMOW NSTLST, DSIP (3), OLDZ, SRVICS,REL (6)
COMMON MEU(5), FREE (5), PARA(5), SPACE(5), SBUDGT(5)
COMMOH SHOURS(5), SDAYS(5), SWEEKS (5), OLDSER;DIS(6)

Ipse contmag

350 COMMOH TCHEXP (2), TCHTS (2) TEXTS(2), DESKS (2), TCHBUD(2)




400 CGMON SERVIC, BASE, OLDC(2)
418 COMON DROPS, TYPE, IG, GRDMAX,ABAR
42.0

609T DIWFNSIO: C(3)


6930 ChLL SCHPLO
GOABCOM, COLAPSE THE FY VECTOR TO A VECTOR sSr (COUnSE)

6961
6075
6080 COM
6090COH
0160 CALL INFET(Z)

6120 Il (DASE) 14,14,13
\(6130 \quad 13\) WRATE (45,800), ITTAG,TYPE, IG, \(\%\)
6140 EGO FORHAT (IA, IX,I1,1X,I2,10FG.3)
\(615 \pi \quad D 2=0.0\)
cir: COE:O.
Gif ! \(\mathrm{H} \% \mathrm{Z} \cdot 01 \mathrm{~m}\)

620016 DO 120, COLRSE=1,2
6210
CALL IHSTRU(COURSE,CC)
\(62.20 \quad \mathrm{C}(\mathrm{COURSE})=\mathrm{CC}\)
6230CON. IF THIS IS A BASE RUN, SET DC=0
62.40 IF (BASE) \(15,15,17\)

625017 UC:ニ0.0
© 260 GOT020
6270 15 \(D C=C\) (Crunses - 01nc (comase)
6280COM. COBPUTE CHANGE IN STATE DLI: TO INTERUEHTION

\(6300+((\) GRADE \((I G)-A L A S T(C O U R S E)) / D Y E A R(I G))-S T L A S T(C O U R S E))\)
6315C0\%. COMPUEE IHE CHANOE IA STATH:
6326 DSsF \(=\) SSF (COURSE) -STLASI (COURSE)
633BCON. SUII TO OBTAI IV TOTAL STATE CHANGE
6310
6356COH. COHPUTE STATE AT BEGIMHIHG OF NEXT GRADL
6360
\(637000 i 1\)
6380 CON 6390

BaCOin
```

IPGE conTTBUEO
641F 120 COMTIi:UE
64ROCOS, IF THIS IS A EASE RUN, SAVE THE IHSTRUCHIOA VALUES AHD
6430CON. THE SERYICE VALBES
6440 IF(EfSE)25,25,22

```


```

6A7OC0:M. ESTIHATE PASS-FAIL. PROEAGILITIES
6430 25 CALL PFVECI
G494 75 RETURN
6500 SUSE SCHFLO
G%ID SUSE INPED
6520 EUSE JHSTRU
G530 SUSE PFVICT
65A0 FUNGTIO: AD(FU, eD,YEAS,IFLAG)
6500 D)MEUSJO! Y(85), ABC(85;
6570 IF (j!10) 30,!0,20
6580 10 READ (50) X
6590 READ (51) NITC
6650 GOT0 111
6610 30 10 106 1::1,85

```

```

6625 JF (D1F) 50,50,96

```

```

6040 +X(J-1))
6650 GOTO 110
606% or be5:05%!
6065 J: (BTF) 100,05,10,
6%% ! % %!!

```

```

6699 111 AB=XBAR
6709 RETUFN
6 7 1 0 ~ E N D
656585

```
```

20CON, PFRTORHS THE SCHOOL FLOH USIMG THE NARKOU PROCESS
100
11%
18.9
sh.lus,rthe,remet
130 INTLGER REL,BASE,COUFST,TYFE
140 INTEGER typmax,g%DinX
320 COMmON B1,ER,Cl,C2,NOSTUD,TNUANT,INYEAR
315
32.a
330
340
350
360
376
3*6
392
400
110
70necoin

```

```

762000i.
703000%.
7040
7 0 5 0
7%
7%
;
7oyk lal cuarlide
710B 75 FETURN

```

IMPED
\begin{tabular}{|c|c|}
\hline 1 & SUBRGUTIAE Iffede 2 ) \\
\hline 20 com & Coliputes the student mmpedence \\
\hline 30 COM. & Z - THE lmpedence \\
\hline 100 & REAL MARKOV \\
\hline 110 & INTEGER TRUANT, DROPS \\
\hline 120 & IUTEGER SRVICS, FREE, IECEN \\
\hline 130 & IHTEGER REL, BASE, COURSE, TYPE \\
\hline 140 & IHTEGER TYPNAX, GRDMAX \\
\hline 300 &  \\
\hline 310 & COHMON NSTLST, DSIP (3), OLDZ, SRVICS, 3 (EL (6) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & 306 &  \\
\hline & 330 &  \\
\hline & 340 &  \\
\hline & 350 & commch TCllexp (2), TCHES (2), TExTS (2), DESKS (2), TCHBUD(2) \\
\hline & 360 &  \\
\hline & 370 &  \\
\hline & 380 & CONHOR A (2), PPLAST(4), STLAST (3), ALGST(2) \\
\hline & 350 &  \\
\hline & 480 & commeir Servic, base, OLIDE (2) \\
\hline & 419 & COMMOR DROPS, TYEE, IG, GPDMA , AEAP \\
\hline & 5600 &  \\
\hline & 5910 & REAL 1!OTHP \\
\hline & 5620com. & PICY UP THE WUSEES OF SERVIGES OFFERED \\
\hline & 5830 & Cit SRVICS \\
\hline & 5840 & FGia \(=6 \mathrm{Cl}\) \\
\hline & 5\%5000\%. &  \\
\hline & 5260006. & litenstiy, bind [mention \\
\hline & 570 & SERUIC:0.b \\
\hline & 5386 & D0 110, G: 1, GM \\
\hline & 5996 &  \\
\hline & 5168 &  \\
\hline & 5110 &  \\
\hline & \(512500 \%\) &  \\
\hline & 5130 &  \\
\hline & 5140 + & (SU( 1 )*SFRQAL (G)+SU(2)*SINTEN(G)+\% (3)*SDURAT(G)) \\
\hline & 5150not. & Recycle to meyt sprutos \\
\hline & \(516: 110\) & chatifus \\
\hline & 9.19\% &  \\
\hline & Sla, & T: \\
\hline & 5196003. & If NOT, COHPUTE the incrense over the base. \\
\hline & 5200 & IF (SASE) 7, 7,6 \\
\hline & 52106 & SCHANG \(=8.0\) \\
\hline & 52.20 & EFFECT \(=6\) \\
\hline & 52.30 & 60 T0 8 \\
\hline & 52487 & SCHAMG:SERUIC-OLDSER \\
\hline & 525000\%. &  \\
\hline & 52.60 & EFFECT:SCHANG/(1.0.( (GRADE(IG)-DYEAR(IG))/01.0\%)**2) \\
\hline & 527000\%. & compure the indicated mbledance \\
\hline & 5236 8 &  \\
\hline & 5258 & LO 12, \(1=1,6\) \\
\hline & 5300 & 1HDIMP=IADIPP+(ZU(1)*DIS (I) : (1.0-EFFECT*REL (I) ) ) \\
\hline & 531012 & continue \\
\hline & 53200001. & If this is a base run, use indinp as the impedance. \\
\hline & 5330 & IF (BASE) \(10,10,9\) \\
\hline & 53109 & \(\mathrm{Z}=\mathrm{INDIHP}\) \\
\hline & 5350 & G0T075 \\
\hline & 5368 com . & Compute the maximut possible impedance change \\
\hline ( ) & 537010 &  \\
\hline & \(5380 \mathrm{CON} \mathrm{\%}\). & COMPUTE HEN INPEDANCE - \\
\hline & 5398 & \(Z=\operatorname{HINIF}(01.0+\mathrm{HAXCNG})\), INDIMP) \\
\hline
\end{tabular}

JMEF COSTSMURD

コAEO 75 RETUBA

INSTRI
\begin{tabular}{|c|c|}
\hline 1 &  \\
\hline 2000\％． & Cowrutrs the mubct of listauction \\
\hline 3 cachig & COURSE－ThE AEST CATAGORY \\
\hline 12003． & CO－JHE JEDPDENCE IndF\％ \\
\hline 18 c & Ken！Mas， \\
\hline 110 & J NTEGEr Trdint，DTus \\
\hline 120 & INTEGER SRUJCS，FREL，HECEIG \\
\hline 130 & IHEGER PEL，BASE，COMRSE，TYPE \\
\hline 140 &  \\
\hline 300 &  \\
\hline 310 & （0400： \\
\hline 320 &  \\
\hline 330 &  \\
\hline 340 &  \\
\hline 55 &  \\
\hline 3 O &  \\
\hline \(\because \%\) &  \\
\hline ら心以 &  \\
\hline 390 & COWMON TYPNAX，GRADE： 2 ，DYEAP（12） \\
\hline 400 & CCMHON SERVIC，BASE，OLDC（2） \\
\hline 410 & COMMON DROPS，TYPE，IG，GRDTAX，AEAR \\
\hline 9090 COM. & COMPUTE INDICES OF TEACRIMG QUALITY，INTENSITY，AHD DURATIOU \\
\hline 921021 & TCHQAL＝TQU（1，COURSE）＊RECFH（COURSE） \\
\hline \＄523 \％ &  \\
\hline 9330 &  \\
\hline \(9013+\) &  \\
\hline 9050 ＋ & TIU（4，COUPSE）\(\times\) ICHStld（COURSF． \\
\hline  &  \\
\hline 927 kcom ． & COMPULE OVEGALL INSIRUETIO：INDEX \\
\hline 9080 &  \\
\hline SOSE＋ & TU（3，COURSE）\％TCHDUR \\
\hline 9109 75 & HETURN \\
\hline
\end{tabular}
prover

1
2000\%. 3060 i. recom. 115
116
120
130
140
350
319
320
336
3:0
359
350
370
389
390
409
410
750000 A. 751000 H 752000 M. 7532
154800. 75
757 ECOH. 75803 759 ECOM. 7650
7610
7628
\(763 \%\)
7640
7650
7660 102.
757000.2

7680
7698 con .
7709 com .
7718
772.0con.

7730103
774075

SUE:OUTIHE pFVECT

BELOU HRESHOLD STATES USIMG THE ACHIEVEAENT INCREASE PREDICTED BY fHE IHTERVERTIOA PROGESS

INTEGER TRUANT, DROPS
INTEGER SRVICS,FHEE, RFCEN
I VTEGER FEE, BASE, COURSE, TYPE
InTEGER TYPinax, GRDNAX








COWOH \(A(2)\), PPLAST(1), STLAST(3), ALAST(2)

conion swvornde, orec)

Cohpute the fass veotor prot the scmodi Flon resulis.
Plus the change In the pass vecton due To fille I
CyCLE FOA EACH COURSE
DO 103, J:1, 2

!": : :
SET Flimal. Ilidex of Thit gROUP
IFIN = INIT + NSUN - 1
CYCLE THROUGH THE GROJP, NOVING FAILURES TO PASSES
DO \(122 \mathrm{~J}=\) IHIT, IFIH
\(\mathrm{L}=\mathrm{J}+\mathrm{NSUH}\)
FAILP \(=1 .-S(I)\)

PP(d) \(=\operatorname{PP}(J)\) TEHP
\(P F(L)=\mathrm{Ff}(\mathrm{L})+\mathrm{TEIP}\)
conTIHAE

INIT \(=1 H I T+2 * H S U M\)
HAS SUPJECT I BREN COMPLETEO?
IF NOT, GO TO 3 AND PROGESS THE NEXT BATCH OF FAILURES
IF(INIT-4)3.183.103
CYCLE TMROUGH NEXT SUBJEOT
CCHTIIUE
RETURN

DRPOUT

1
20COM. COHPUTES THE NUHBERS OF DROPOHTS AHD TRUAHTS
100
110 InTEGET IRUABT, DROPS
120
\(13:\)
140
300
310
32.0
3.30

349
\(35 \%\)
36.

378
385
306
4020
410
s50ncon.
9510
s5:t00n.
9530 COM
9540
9552com.
9500
9,7
5i:"
ロ:"
9600
9610
9620
9532
9540c0\%.
s650c0n.
9550
\(95 \%\)
9630
9690
9\%に

9716
972.0

9720
1 DNOPS=0
2 TRUANT \(=(C 1 * A L A G B A+C R) * N S T L S T \geqslant D Y R\)
IF (TRUANT) 3,4,4
9740
97503 TRUANT=0
9760COM. SUBTRACT THE DROPOUTS FRON THE NUNBER OF STUDENTS
\(9770 \quad 4\)
9780C0N 979\&COM - - 2 ECON NOSTUD \(=\) NSTLST-DROPS
if the result is less than zero, set nostud
EQUAL TO ZERO AND THE NUPBER OF DROPOUTS
EQUAL TO THE PREVIOUS MUMBER OF STUDENTS.

\section*{MRPOUT COMi]:UOT}
```

G\&10 IF(NOSTUD)5,6,6
9820 5 DHOPS:DPOPS*MOSTOD
9830 NOSIUD~F
9840 6 ITTGG=1000%TYFE+10:IG

```

```

S860CON. IN TKEIR OUTFUT FILES.
9870
\$880
9890
S9%
9910 RE:URN
WRITE(40,801),ITTRG,TYPE,IG,DRCPS
HRITE(41,801),IITRG,TYPR,IC,TRUAAT
HIITE(A3,8Q1),ITTRG,TYPE,IG,NOSIUD

```

career

```

5A3 G=.16
550 75 CHOICE(ITYPE,6)=CHOICE(ITYPE,6)+RELAO(J,ITYPE)*E
57%
590
609
610
6 2 0
63%
6 4 0
6 5 0
66%
6%%
680
690
7%0
716
720
730
740
75.0
760
7%
780
790
800
810
82.)
-N..

```

EQUAL.

100
110
120
125
130
140
150
1602
170 1: 1 TEMP:0.

EQUAL COATIHUED
\begin{tabular}{|c|c|c|}
\hline 153 & & fanabew \\
\hline 200 & 30 & JCKADE＝JGRADEW \\
\hline 2.10 & & IF（A（ \(1, \mathrm{JGRADE}, \mathrm{YRSE})-\) TEAF） \(31,31,32\) \\
\hline 220 & 31 &  \\
\hline 233 & 22 & TEMP \(=\) A（4，JGRALE，KRSE） \\
\hline 2.40 & & DOATITYP：\(=1.4\) \\
\hline 2.12 & & TCAPJご的。 \\
\hline 260 & & JGRADE＝0 \\
\hline 270 & 33 & JGRADE＝JGRADE＋1 \\
\hline 280 & & IF（A（ITYPE，JGRADE，KPSE）－TETPI）34，34，35 \\
\hline 290 & 34 & IF（JGRADE．．IGML．1）33，35，35 \\
\hline 360 & 35 & TEHPI＝A（ITYE，JGRADE，RRSE） \\
\hline 319 & &  \\
\hline 311 & & IF（ITYPE－4） \(3 \%, 36,36\) \\
\hline 312 & 36 & E（ITYPE，Index（JGRADE），Rrge \(=1\) 。 \\
\hline 313 & & G0i040 \\
\hline 320 & 37 &  \\
\hline 336 & &  \\
\hline 347 & \(+\) &  \\
\hline 350 & 19 & continue \\
\hline 360 & & WHITE（ \({ }^{\text {S }}\) ， E \\
\hline 378 & & Schatil comery \\
\hline 380 & & END \\
\hline
\end{tabular}

\section*{COHEFF}
```

20COH. CONPUTES THE COMMUHITY EFFECTS
1000 \$FILE 01, 02, 03, 04, NOSTUD, A, IHITX, CEFI%, CHOICE
1003
1010
1020
1030
1031
1040
1050
1080
1081
1085
1087
1090
1091
M,INDEX (I) = AINI (INDEX (I))
g READ (5,A) IT, IG,NS
A: FORINT (5X, 11, 13, 15)
IF (IG . 1) 431, 432, 431
432 N (IT) = NS

```

\section*{comeff contumuen}

```

1190 509 B12=N(1)+N(2)
1260 E334=M(3)+N(4)
1210 BZERO = 212 + E3A
1220 DO 170 ITYPE = 1, 4
1230 PCOL = COL (ITYP!)
1246
12.50 31 BY = 1 - ALPHA
1260 GO TO 36
1270 32. BY = 1
12E! GOTO 36
1250 33 EY = 1 + Al.PHA
1300C FACIAL BIAS
131% 30 BBI2 = IN(1) : FIMK (1) + H(?) * FIHK (2)
132G EB34= !(3) % FI!% (3) % |(4) = FIMK (4)
1340 GOTO (201, 201, 202, 2.{2) ITYPE
135% 801 E = [B1% \& [%%:% / BlE
1360 G0 T0 203
13% 20% B = BE3A * EZFHO / B3A
1380 203 B = B / (8812+ B334)
1350 B = 3 % EY
lag% Achammena l.vubs
1410 CALI.R (5, AA(1))
1420 CAL.L.R (9, AA(2))
1429 IMAX = INDEX (IGH.. 1)
1430 CALL R (IIAX, AM(3))

```

```

[4.! E: Fghat (ix,]1,]3, (FG.3))

```

```

1610C AND EXPECTED LIFETIME EARNINGS
1620 DO 190 1 = 1,5
1630
1640
1650
1660
1670
1680
1695
17%2
1710
1720
1730
1740
1750
1760
1770
1780
PLE (I) = DPV (I) * YBAR (I) * B * C (I) * AA (I)
Q = DATA (I)
R = RATA (I)
P = PLE. (I)
ELE (I) = UNEMP (ITYPE, Q, R, P)
190 continuE
PLEAC = PCOI. * DPV(G) * YBAR(G) * B
G= MTA (E)
R= RATA (6)
ELEAC = UNEMP (ITYPE, Q, R, PLFAC)
PLEAD = (1. - PCOL) * DPV(%) % YBAR(%) * B
ELEAD := UNEMP (ITYPE, DATA(7), RATA(7), PL\&AD)
PLE(\sigma) = PIEAC + PLEAD
ELE(\sigma) = ELEAC + ELEND
E = P = D
DO 97 M = 1.6
CH=CHOICE (M, ITYPE)
E = ELE (MS * CH + E

```

COMEFF COMTIBUED
\begin{tabular}{|c|c|c|}
\hline 1610 & & \(\mathrm{P} \because \mathrm{PLEE}\) (G) \(\quad\) CR + P \\
\hline 1820 & 97 & CONTINUE \\
\hline 1836 & & PLE \((\%)=P / \mathrm{F}\) (ITYPE) \\
\hline 1840 & & ELE (7) = - N (ITYPE) \\
\hline 2010 & &  \\
\hline 2011 & \(t\) &  \\
\hline 2012 & \(+\) & + .04 * (N(ITYPE) - CHOJCE(1, ITYPE) - CHOTCE(2, ITYPE) \\
\hline 2013 & + & CHOICE (3, ITYPE) - PCOL \% STARA) ) / N (ITYPE) \\
\hline 2930 & & WRITE (ITYPE) (CHOICE (J,ITYPE), J = 1, 6), N(ITYPE), \\
\hline \(2031+\) & + & PIEE, ELE, U , \\
\hline 2632 & & Enditle Itype \\
\hline 2950 & 173 & conilide: \\
\hline 2055 & & SCHAIN Flex \\
\hline 2060 & 70 & F.UD \\
\hline 20700 & & EARHJWG Conherteo for first year s unemploynmat \\
\hline 2080 & &  \\
\hline 2690 & & JF (ITYPE - 3) 37, 38, 38 \\
\hline 2100 & 33 & ULEMP \(=\) (1-DATA) \(\%\) PLE \\
\hline 2110 & & UNENP = UNEMP + DATA \(\times\) RATA \(*\) PLE \\
\hline 2123 & & RETURA \\
\hline 2130 & \(3 \%\) &  \\
\hline 8140 & & USETiP = URESA \(*\) DATA \(\therefore\) RATA \(*\) PLE \\
\hline 2.159 & & RETURA \\
\hline 2160C & & Fhther's lhcone \\
\hline 2170 & & FUNCTJOA FItik (JTYFE) \\
\hline 2150 & &  \\
\hline 8.195 & 4 &  \\
\hline foza & ? &  \\
\hline ¢ & \(\therefore\) &  \\
\hline 2220 & 44 & FINK = 8060; RETURI! \\
\hline 2230 & & SUEROLITINE R (L, AL) \\
\hline 2239 & & REPL I INDEX \\
\hline 2240 & & COMmON INDEX (!2) \\
\hline 2259 & 9 & READ (6), IT, IG, A1, A2 \\
\hline 2263 & & IF (IUDEX(IG) .. i) 9, 10, 10 \\
\hline 8270 & 10 & Dachijace 6 \\
\hline 2280 & & READ (G), IT, IG, AI, n2 \\
\hline 2297 & & \(A L=1+(A 1 \div A 2) / 2-\operatorname{INDEX}(I G)+1\) \\
\hline 2291 & & BACKSPACE 6 \\
\hline 23 Ebj & & RETUĖI \\
\hline
\end{tabular}

\section*{FI.EX}

\section*{1600\%}

1010\%
1020:
1030\%:
1031 COM.
1040
1050
1060
1670
1080
1690
1160
1110
1120
1130
1149
1150
1155
1160
1170
1180
1190
        IG=TAXGRD ; ID= FIHDEX(TG)
1340 13: PFIMT 435, 1D, (F. (IT, ID, L), L =1, 2)

\(1360+7 \mathrm{HMATH}=, 55.23\)
109 IGTMIT \(=1\) IF (FINDEX
IGTHIT \(=1\)
110 CONTIHUEWEGROSSWLESS THAK \$3060NEGROES-- FORE THAN \(\$ 3\) EODWITES - -LESS THAN \$30es
\[
\text { WHIES - MORE THAN } \$ 30 \text { OO }
\]
the obtpur foutinf.

RA:
RA:
DIMENSION E (A, 12, 2): INTEGER F (7, 3)
RT: READ (
IF (FNFILE
IG RTDuncion 12,4\(), N U(12,4)\)READ (2) MAXGYD, dI, INYEAR, (FINDEX(J), J=1, MAXGFD)
RD:1F (EIDFILEA) FiDREAT (S) FMaxeris - maxgro - 1IGItIT = 1DO 110 I \(=1\), MAXGRD
DO 1001 IT \(=1,1\)PRIITT
(200)

335 FORNAT (//IUX, SHGRADEIOX, IIHACHIEVEUENTIEX, 7HTKUANTS
271 PRINT 8 (DROPUUTS)PRINT310, ((FINDEX(IG), A(IG,I,IT),A(IG,2,IT),NT(IG,IT),IG=NAXGRD ; ID= FINDEX(IG)\(+\quad\) 7HMATH \(=, F 5.23\)\(J=I T+5\)
\(\operatorname{READ}(J)\) F, U
595 FORMAT(7HGRADE 6I11, 19, I10)

\section*{FLEX CONTINUED}
```

1460
1470
1436
1490
1500
1510
15公0
1532
1540
1550
1560
1570
1530
1599

```
    PinIli 615, (F(2,M), N = 1, 3)
```

 PinIli 615, (F(2,M), N = 1, 3)
    ```
615 FORNATS/EHGRAEE 10I10, 19, I10)
```

615 FORNATS/EHGRAEE 10I10, 19, I10)
PRIMT, DROPOUTS
PRIMT, DROPOUTS
Pailul 6\&5, (F(3,M), M=1,3)
Pailul 6\&5, (F(3,M), M=1,3)
645 FORTAT(/8HGRADE 12II0, IS, II0)
645 FORTAT(/8HGRADE 12II0, IS, II0)
PAIUT." DROEOUTS
PAIUT." DROEOUTS
FRINT 675, (F(4,M), M =1,3)
FRINT 675, (F(4,M), M =1,3)
675 FORHAT(/10HVOCATIONALI8, 19, II0)
675 FORHAT(/10HVOCATIONALI8, 19, II0)
FRINT 695, (F(5,M),M = 1,3)
FRINT 695, (F(5,M),M = 1,3)
695 FORMAT(//IOHCOMMERCIALIE, IS, I10)
695 FORMAT(//IOHCOMMERCIALIE, IS, I10)
PRJN'S 720, (F(6,M), }n=1,3
PRJN'S 720, (F(6,M), }n=1,3
720 FORNAT(//BHACADEMICI10, JS, II0)

```
720 FORNAT(//BHACADEMICI10, JS, II0)
```



```
Pr::T 705, (F(7,1i), H= 1, 3)
```

Pr::T 705, (F(7,1i), H= 1, 3)
765 FONHAT(/54T0IALI13, 19, 110)
765 FONHAT(/54T0IALI13, 19, 110)
PRIHT,
PRIHT,
1001 COMTLALS
1001 COMTLALS
STOP
STOP
EHD

```
EHD
```


[^0]: \# P. 66, Jay W. Forrester, "Managerial Decision Making" in Computers and the World of the Future, Martin Greenberger, ed., The M. I. T. Press, Cambridge, Mass., 1962.

[^1]: *Socioeconomic rank and achievement rank, when weighted equally, provide - a predictor of occupational level significant on the ng\% level. * Prediction is on the basis of socloeconomic status and ability ranking s.

[^2]: ${ }^{1}$ James S. Coleman, et al, Equality of Educational Opportunity . (Washington: U. S. Government Printing Office, 1966) p. 297.

[^3]: ${ }^{3}$ Ibid., PP. 21-22.

[^4]: SIbid, , P. 22.
 10 Ibid. , Table 3.24.2, P. 314-315.

[^5]: 11 Ibid., pp. 298-302, especially Tables 3.221 .3 and 3.22 1.6 12 Ibid. ; p. 302.
 13 Alan B. Wilson, "Educational Consequences of Segregations in a California Community," (Berkely, California: University of California Survey Research Center, 1966 Nineol, p. 26.
 ${ }^{14}$ Coleman, op cit., Table 3.23.1, p. 303

